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Preface

Welcome to the UltraSPARC T1 Processor Supplement, D2.0. This document contains
information about the processor-specific aspects of the architecture and
programming of the UltraSPARC T1 processor, one of Sun Microsystems’ family
processors compliant with UltraSPARC Architecture™. It is intended to supplement
the UltraSPARC Architecture 2005 with processor-specific information.

Target Audience
This User’s Guide is mainly targeted for programmers who write software for the
UltraSPARC T1 processor. This manual contains a depository of information that is
useful to operating system programmers, application software programmers and
logic designers, who are trying to understand the architecture and operation of the
UltraSPARC T1 processor. This manual is both a guide and a reference manual for
programming of the processor.

Fonts and Notational Conventions
Fonts are used as follows:

■ Italic font is used for emphasis, book titles, and the first instance of a word that is
defined.

■ Italic font is also used for terms where substitution is expected, for example,
“fccn”, “virtual processor n”, or “reg_plus_imm”.

■ Italic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

■ lowercase helvetica font is used for register field names (named bits) and
instruction field names, for example: “The rs1 field contains....”
• ix



■ UPPERCASE HELVETICA font is used for register names; for example, FSR.

■ TYPEWRITER (Courier) font is used for literal values, such as code (assembly
language, C language, ASI names) and for state names. For example: %f0,
ASI_PRIMARY, execute_state.

■ When a register field is shown along with its containing register name, they are
separated by a period (’.’), for example, FSR.cexc.

■ UPPERCASE words are acronyms or instruction names. Some common acronyms
appear in the glossary. Note: Names of some instructions contain both upper- and
lower-case letters.

■ An underscore character joins words in register, register field, exception, and trap
names. Note: Such words may be split across lines at the underbar without an
intervening hyphen. For example: “This is true whenever the integer_condition_
code field....”

The following notational conventions are used:

■ The left arrow symbol ( ← ) is the assignment operator. For example, “PC ← PC +
1” means that the Program Counter (PC) is incremented by 1.

■ Square brackets ( [ ] ) are used in two different ways, distinguishable by the
context in which they are used:

■ Square brackets indicate indexing into an array. For example, TT[TL] means the
element of the Trap Type (TT) array, as indexed by the contents of the Trap
Level (TL) register.

■ Square brackets are also used to indicate optional additions/extensions to
symbol names. For example, “ST[D,Q]F” expands to all three of “STF”,
“STDF”, and “STQF”. Similarly, ASI_PRIMARY[_LITTLE] indicates two
related address space identifiers, ASI_PRIMARY and ASI_PRIMARY_LITTLE.
(Contrast with the use of angle brackets, below)

■ Angle brackets ( < > ) indicate mandatory additions/extensions to symbol names.
For example, “ST<D|Q>F” expands to mean “STDF” and “STQF”. (Contrast with
the second use of square brackets, above)

■ Curly braces ( { } ) indicate a bit field within a register or instruction. For example,
CCR{4} refers to bit 4 in the Condition Code Register.

■ A consecutive set of values is indicated by specifying the upper and lower limit of
the set separated by a colon ( : ), for example, CCR{3:0} refers to the set of four
least significant bits of register CCR. (Contrast with the use of double periods,
below)

■ A double period ( .. ) indicates any single intermediate value between two given
end values is possible. For example, NAME[2..0] indicates four forms of NAME
exist: NAME, NAME2, NAME1, and NAME0; whereas NAME<2..0> indicates
that three forms exist: NAME2, NAME1, and NAME0. (Contrast with the use of
the colon, above)
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■ A vertical bar ( | ) separates mutually exclusive alternatives inside square
brackets ( [ ] ), angle brackets ( < > ), or curly braces ( { } ). For example,
“NAME[A|B]” expands to “NAME, NAMEA, NAMEB” and “NAME<A|B>”
expands to "NAMEA, NAMEB".

■ The asterisk ( * ) is used as a wild card, encompassing the full set of valid values.
For example, FCMP* refers to FCMP with all valid suffixes (in this case,
FCMP<s|d|q> and FCMPE<s|d|q>). An asterisk is typically used when the full
list of valid values either is not worth listing (because it has little or no relevance
in the given context) or the valid values are too numerous to list in the available
space.

■ The slash ( / ) is used to separate paired or complementary values in a list, for
example, “the LDBLOCKF/STBLOCKF instruction pair ....”

■ The double colon (::) is an operator that indicates concatenation (typically, of bit
vectors). Concatenation strictly strings the specified component values into a
single longer string, in the order specified. The concatenation operator performs
no arithmetic operation on any of the component values.

Notation for Numbers
Numbers throughout this specification are decimal (base-10) unless otherwise
indicated. Numbers in other bases are followed by a numeric subscript indicating
their base (for example, 10012, FFFF 000016). In some cases, numbers may be
preceded by “0x” to indicate hexadecimal (base-16) notation (for example,
0xFFFF 0000). Long binary and hexadecimal numbers within the text may have
spaces inserted every four characters to improve readability.

An en dash ( – ) with no spaces indicates a range, for example, 000116–000016.

Also see the colon ( : ) and double period ( .. ) notation described in the previous
section.

Informational Notes
This manual provides several different types of information in notes, as follows:

Note General notes contain incidental information relevant to the
paragraph preceding the note.
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Programming
Note

Programming notes contain incidental information about how
software can use an architectural feature.

Implementation
Note

An Implementation Note contains incidental information,
describing how an UltraSPARC Architecture processor might
implement an architectural feature.

V9 Compatibility
Note

Note containing information about possible differences between
UltraSPARC Architecture and SPARC V9 implementations. Such
information may not pertain to other SPARC V9
implementations.
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CHAPTER 1

UltraSPARC T1 Basics

1.1 Background
UltraSPARC T1 is the first chip multiprocessor that fully implements Sun’s
Throughput Computing initiative. Throughput Computing is a technique that takes
advantage of the thread-level parallelism that is present in most commercial
workloads. Unlike desktop workloads, which often have a small number of threads
concurrently running, most commercial workloads achieve their scalability by
employing large pools of concurrent threads.

Historically, microprocessors have been designed to target desktop workloads, and
as a result have focused on running a single thread as quickly as possible. Single
thread performance is achieved in these microprocessors by a combination of
extremely deep pipelines (over 20 stages in Pentium 4) and by executing multiple
instructions in parallel (referred to as instruction-level parallelism, or ILP). The basic
tenet behind Throughput Computing is that exploiting ILP and deep pipelining has
reached the point of diminishing returns and as a result, current microprocessors do
not utilize their underlying hardware very efficiently.

For many commercial workloads, the physical processor core will be idle most of the
time waiting on memory, and even when it is executing it will often be able to only
utilize a small fraction of its wide execution width. So rather than building a large
and complex ILP processor that sits idle most of the time, a number of small, single-
issue physical processor cores that employ multithreading are built in the same chip
area. Combining multiple physical processors cores on a single chip with multiple
hardware-supported threads (strands) per physical processor core, allows very high
performance for highly threaded commercial applications. This approach is called
thread-level parallelism (TLP). The difference between TLP and ILP is shown in
FIGURE 1-1.
1



FIGURE 1-1 Differences Between TLP and ILP

The memory stall time of one strand can often be overlapped with execution of other
strands on the same physical processor core, and multiple physical processor cores
run their strands in parallel. In the ideal case, shown in FIGURE 1-1, memory latency
can be completely overlapped with execution of other strands. In contrast,
instruction-level parallelism simply shortens the time to execute instructions, and
does not help much in overlapping execution with memory latency.1

Given this ability to overlap execution with memory latency, why don’t more
processors utilize TLP? The answer is that designing processors is a mostly
evolutionary process, and the ubiquitous deeply pipelined, wide ILP physical
processor cores of today are the evolutionary outgrowth from a time when the CPU
was the bottleneck in delivering good performance.

With physical processor cores capable of multiple-GHz clocking, the performance
bottleneck has shifted to the memory and I/O subsystems and TLP has an obvious
advantage over ILP for tolerating the large I/O and memory latency prevalent in
commercial applications. Of course, every architectural technique has its advantages
and disadvantages. The one disadvantage of employing TLP over ILP is that
execution of a single strand may be slower on a TLP processor than an ILP
processor. With physical processor cores running at frequencies well over one GHz,
a strand capable of executing only a single instruction per cycle is fully capable of
completing tasks in the time required by the application, making this disadvantage a
non-issue for nearly all commercial applications.

1. Processors that employ out-of-order ILP can overlap some memory latency with execution. However, this
overlap is typically limited to shorter memory latency events such as L1 cache misses that hit in the L2 cache.
Longer memory latency events such as main memory accesses are rarely overlapped to a significant degree
with execution by an out-of-order processor.

TLP

ILP

Strand 1

Strand 2

Strand 3

Strand 4

Single strand executing
2 instructions per cycle

Executing Stalled on Memory
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1.2 UltraSPARC T1 Overview
UltraSPARC T1 is a single-chip multiprocessor. UltraSPARC T1 contains eight
SPARC® physical processor cores. Each SPARC physical processor core has full
hardware support for four virtual processors (or “strands”). These four strands run
simultaneously, with the instructions from each of the four strands executed round-
robin by the single-issue pipeline. When a strand encounters a long-latency event,
such as a cache miss, it is marked unavailable and instructions will not be issued
from that strand until the long-latency event is resolved. Round-robin execution of
the remaining available strands will continue while the long-latency event of the
first strand is resolved.

Each SPARC physical core has a 16-Kbyte, 4-way associative instruction cache (32-
byte lines), and 8K-byte, 4-way associative data cache (16-byte lines) that are shared
by the four strands. The eight SPARC physical cores are connected through a
crossbar to an on-chip unified 3-Mbyte, 12-way associative L2 cache (with 64-byte
lines). The L2 cache is banked 4 ways to provide sufficient bandwidth for the eight
SPARC physical cores.

1.3 UltraSPARC T1 Components
This section describes each component in UltraSPARC T1:

■ SPARC physical core
■ Floating-point unit
■ L2 cache

1.3.1 SPARC Physical Core
Each SPARC physical core has hardware support for four strands. This support
consists of a full register file (with eight register windows) per strand, with most of
the ASI, ASR, and privileged registers replicated per strand. The four strands share
the instruction and data caches.

FIGURE 1-2 illustrates SPARC physical core.
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FIGURE 1-2 SPARC Core Block Diagram

1.3.2 Floating-Point Unit (FPU)
A single floating-point unit is shared by all eight SPARC physical cores. The shared
floating-point unit is sufficient for most commercial applications, in which fewer
than 1% of instructions typically involve floating-point operations.

1.3.3 L2 Cache
The L2 cache is banked four ways, with the bank selection based on address bits 7:6.
The cache is 3 Mbytes, 12-way set associative, and has a line size of 64 bytes.

I-Cache

Strand

Instruction

Registers

Strand

Scheduler
Decode

ALU

D-Cache

External

Interface

Store Buffers

Register Files
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CHAPTER 2

Data Formats

The UltraSPARC T1 processor supports all UltraSPARC Architecture 2005 data
formats; see the Data Formats chapter of the UltraSPARC Architecture 2005 for
details.
5
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CHAPTER 3

Registers

This chapter discusses the specifics of UltraSPARC T1 registers, as they differ from
the register definitions in UltraSPARC Architecture 2005.

3.1 Ancillary State Registers (ASRs)

3.1.1 TICK Register
See the UltraSPARC Architecture 2005 for a general description of this register.

The TICK register contains two fields: npt and counter. On an UltraSPARC T1
processor, the npt field is replicated per strand, while the counter field is shared by
all four strands on a physical processor core. The counter increments each physical
processor core clock but, on an UltraSPARC T1 processor, the least significant 2 bits
of the counter field always read as 0.

3.1.2 General Status Register (GSR)
Each strand has a nonprivileged General Status register (GSR), as described in the
UltraSPARC Architecture 2005.

All UltraSPARC Architecture 2005 GSR fields are supported in the UltraSPARC T1
implementation. However, the mask and scale fields are not directly written by VIS
instructions; they are provided for use by software emulation.

3.1.3 Software Interrupt Register (SOFTINT)
Each strand has a privileged software interrupt register, as described in the
UltraSPARC Architecture 2005.
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The software interrupt register contains three fields: sm, int_level, and tm. Setting
any of sm, tm, or SOFTINT{14} generates an interrupt_level_14 exception. However,
these bits are considered completely independent of each other. Thus, a Stick
Compare event will only set bit 16 and generate interrupt_level_14 exception, not
also set bit 14.

3.1.4 Tick Compare Register (TICK_CMPR)
Each strand has a privileged Tick Compare (TICK_CMPR) register, as described in
the UltraSPARC Architecture 2005.

3.1.5 System Tick Register (STICK)
On an UltraSPARC T1 processor, the STICK register is an alias for the TICK register.
Writes to STICK will be reflected in TICK, and vice versa. See the description of TICK
above for the behavior of this register.

3.1.6 System Tick Compare Register (STICK_CMPR)
Each strand has a privileged System Tick Compare (STICK_CMPR) register, as
described in the UltraSPARC Architecture 2005.

UltraSPARC T1
Programming

Note

It is possible (but difficult) in UltraSPARC T1 for software to
clear a SOFTINT bit between the setting of that bit and the
generation of the interrupt from the bit being set because (there
is a three-cycle window between the setting of the bit and the
interrupt in UltraSPARC T1). If software were to do this, it
would see an interrupt_level_n interrupt, but would find no bit
set in the SOFTINT register. Note that normal software would
only clear a bit in response to taking the interrupt_level_n
exception, so this race condition should not occur in normal
operation.

UltraSPARC T1
Programming

Note

It is possible, but even more difficult than the above case, for software
to zero a SOFTINT bit as it is getting set to 1, while another core is
accessing its SOFTINT register, with timing such that hardware
decides to take a SOFTINT trap, but the SOFTINT register is clear by
the time it decides the trap number. In this case, hardware will take a
trap 4016. Since software should only clear a bit that is known to be
set, this should never happen in normal operation.
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3.1.7 PCR and PIC Registers

Notes:

1. Nonprivileged access with PCR.priv = 1 causes a privileged_action exception.

2. Nonprivileged access causes a privileged_opcode exception.

3.2 PR State Registers

3.2.1 Trap State (TSTATE)
Each virtual processor (strand) has MAXPTL(2) Trap State (TSTATE) registers, as
described in the UltraSPARC Architecture 2005.

3.2.2 Processor State Register (PSTATE)
Each virtual processor (strand) has a Processor State register, as described in the
UltraSPARC Architecture 2005.

3.2.3 Trap Level Register (TL)
Each virtual processor (strand) has a Trap Level register, as described in the
UltraSPARC Architecture 2005.

The maximum trap level (MAXPTL) for UltraSPARC T1 is 2.

TABLE 3-1 UltraSPARC T1-Specific Performance Instrumentation Registers

ASR
Number ASR Name Access priv

Replicated
by Strand Description

1016 PCR RW Y2 Y Performance counter control register

1116 PIC RW Y1 Y Performance Instrumentation Counter
register
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3.2.4 Global Level Register (GL)
Each virtual processor (strand) has a Global Level register, as described in the
UltraSPARC Architecture 2005.

The maximum global level (MAXPGL) for UltraSPARC T1 is 2.

3.3 Floating-Point State Register (FSR)
Each virtual processor (strand) has a Floating-Point State register, FSR, as described
in the UltraSPARC Architecture 2005.

UltraSPARC T1 does not provide a nonstandard floating-point mode, so the ns field
of FSR is always 0.

On UltraSPARC T1, FSR.ver always reads as 0.

FSR.qne always reads as 0, because UltraSPARC T1 neither needs nor supports a
floating-point queue (FQ).
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CHAPTER 4

Instruction Set Overview

The UltraSPARC T1 processor implements the instruction set described in the
UltraSPARC Architecture 2005. Additional UltraSPARC T1-specific details are
described in this chapter.

4.1 State Register Access
UltraSPARC T1 supports the standard ASRs described in the UltraSPARC
Architecture 2005.

4.2 Floating-Point Operate (FPop)
Instructions
UltraSPARC T1 implements the floating-point instruction set described in the
UltraSPARC Architecture 2005.

UltraSPARC T1 generates the correct IEEE Std 754-1985 results (impl. dep. #3).

All floating-point quad-precision operations cause an fp_exception_other trap with
FSR.ftt = unimplemented_FPop, and system software must emulate those
operations.
11



4.3 Reserved Opcodes and Instruction
Fields
An attempt to execute an opcode to which no instruction is assigned causes a trap.
Specifically:

■ Attempting to execute a reserved FPop causes an fp_exception_other trap (with
FSR.ftt = unimplemented_FPop).

■ Attempting to execute any other reserved opcode causes an illegal_instruction
trap.

■ Attempting to execute a Tcc instruction with a nonzero value in the reserved field
(bits 10:8 and 6:5 when i = 0 or bits 10:7 when i = 1) causes an illegal_instruction
trap. See Trap on Integer Condition Codes (Tcc) on page 16.

See Appendix C, Opcode Maps, for a complete enumeration of the opcode
assignments.

4.4 Register Window Management
N_REG_WINDOWS = 8 on UltraSPARC T1 (impl. dep. #2-V8). The state of the eight
register windows is determined by the contents of the set of privileged registers
described in the UltraSPARC Architecture 2005.
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CHAPTER 5

Instruction Definitions

5.1 Instruction Set Summary
The UltraSPARC T1 CPU implements both the standard UltraSPARC Architecture
2005 instruction set and a number of implementation-dependent extended
instructions. Standard UltraSPARC Architecture 2005 instructions are documented in
the UltraSPARC Architecture 2005. UltraSPARC T1 extended instructions are
documented in VIS Instructions on page 16.

The superscripts and their meanings are defined in TABLE 5-1.

UltraSPARC T1 executes most UltraSPARC Architecture 2005 instructions in
hardware. Those that trap and are emulated in software are listed in TABLE 5-2.

TABLE 5-1 Instruction Superscripts

Superscript Meaning

D Deprecated instruction

P Privileged instruction

TABLE 5-2 UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware (1 of 3)

Instruction Description
Exception Caused by
Attempted Execution

ALLCLEAN Mark all windows as clean illegal_instruction

ARRAY{8,16,32} 3-D address to blocked byte address conversion illegal_instruction

BMASK Write the GSR.mask field illegal_instruction

BSHUFFLE Permute bytes as specified by the GSR.mask field illegal_instruction

EDGE{8,16,32}{L}{N} Edge boundary processing {little-endian} {non-condition-code
altering}

illegal_instruction

FABSq Floating-point absolute value quad fp_exception_other
[unimplemented_FPop]
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FADDq Floating-point add quad fp_exception_other
[unimplemented_FPop]

FCMPq Floating-point compare quad fp_exception_other
[unimplemented_FPop]

FCMPEq Floating-point compare quad (exception if unordered) fp_exception_other
[unimplemented_FPop]

FCMPEQ{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 = src2 illegal_instruction

FCMPGT{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 > src2 illegal_instruction

FCMPLE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≤ src2 illegal_instruction

FCMPNE{16,32} Four 16-bit / two 32-bit compare: set integer dest if src1 ≠ src2 illegal_instruction

FDIVq Floating-point divide quad fp_exception_other
[unimplemented_FPop]

FdMULq Floating-point multiply double to quad fp_exception_other
[unimplemented_FPop]

FEXPAND Four 8-bit to 16-bit expand illegal_instruction

FiTOq Convert integer to quad floating-point fp_exception_other
[unimplemented_FPop]

FMOVq Floating-point move quad fp_exception_other
[unimplemented_FPop]

FMOVqcc Move quad floating-point register if condition is satisfied fp_exception_other
[unimplemented_FPop]

FMOVqr Move quad floating-point register if integer register contents
satisfy condition

fp_exception_other
[unimplemented_FPop]

FMULq Floating-point multiply quad fp_exception_other
[unimplemented_FPop]

FMUL8SUx16 Signed upper 8- x 16-bit partitioned product of corresponding
components

illegal_instruction

FMUL8ULx16 Unsigned lower 8-bit x 16-bit partitioned product of
corresponding components

illegal_instruction

FMUL8x16 8- x 16-bit partitioned product of corresponding components illegal_instruction

FMUL8x16AL Signed lower 8-bit x 16-bit lower α partitioned product of four
components

illegal_instruction

FMUL8x16AU Signed upper 8-bit x 16-bit lower α partitioned product of four
components

illegal_instruction

FMULD8SUx16 Signed upper 8-bit x 16-bit multiply ← 32-bit partitioned product
of components

illegal_instruction

FMULD8ULx16 Unsigned lower 8-bit x 16-bit multiply ← 32-bit partitioned
product of components

illegal_instruction

FNEGq Floating-point negate quad fp_exception_other
[unimplemented_FPop]

TABLE 5-2 UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware (2 of 3)

Instruction Description
Exception Caused by
Attempted Execution
14 UltraSPARC T1 Supplement • Draft D2.0, 17 Mar 2006



FPACKFIX Two 32-bit to 16-bit fixed pack illegal_instruction

FPACK{16,32} Four 16-bit/two 32-bit pixel pack illegal_instruction

FPMERGE Two 32-bit to 64-bit fixed merge illegal_instruction

FSQRT(s,d,q) Floating-point square root fp_exception_other
[unimplemented_FPop]

F(s,d,q)TO(q) Convert between floating-point formats to quad fp_exception_other
[unimplemented_FPop]

FqTOi Convert quad floating point to integer fp_exception_other
[unimplemented_FPop]

FqTOx Convert quad floating point to 64-bit integer fp_exception_other
[unimplemented_FPop]

FSUBq Floating-point subtract quad fp_exception_other
[unimplemented_FPop]

FxTOq Convert 64-bit integer to floating-point fp_exception_other
[unimplemented_FPop]

IMPDEP1 Implementation-dependent instruction illegal_instruction

IMPDEP2 Implementation-dependent instruction illegal_instruction

INVALWP Mark all windows as CANSAVE illegal_instruction

LDQF Load quad floating-point illegal_instruction

LDQFA Load quad floating-point into alternate space illegal_instruction

LDSHORTF Short FP load, zero-extend 8/16-bit load to a double-precision
floating-point register

data_access_exception

NORMALW Mark other windows as restorable illegal_instruction

OTHERW Mark restorable windows as other illegal_instruction

PDIST Distance between eight 8-bit components illegal_instruction

POPC Population count illegal_instruction

PST Eight 8-bit/four 16-bit/two 32-bit partial stores data_access_exception

SHUTDOWND,P Shut down illegal_instruction

STBLOCKF 64-byte block store with commit data_access_exception

STQF Store quad floating-point illegal_instruction

STQFA Store quad floating-point into alternate space illegal_instruction

STSHORTF Short FP store, 8-/16-bit store from a double-precision
floating-point register

data_access_exception

TABLE 5-2 UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware (3 of 3)

Instruction Description
Exception Caused by
Attempted Execution
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5.2 Prefetch and Prefetch from Alternate
Space
PREFETCH and PREFETCHA with fcn codes of 0–3 and 16–23 (1016–1716) are
implemented; all map to the same operation that brings the cache line into the L2
cache. On an MMU miss, the prefetch is dropped (weak prefetching).

Prefetch fcn codes 516–F16 cause an illegal_instruction trap. These operations are all
“weak” prefetches; in some cases the prefetch operation is dropped.

5.3 Trap on Integer Condition Codes (Tcc)
See the UltraSPARC Architecture 2005 for a complete description of the Tcc
instruction.

5.4 VIS Instructions
UltraSPARC T1 supports in hardware the VIS 2 SIAM instruction and a subset of the
VIS 1 instructions.

All other VIS 1 and VIS 2 instructions (see TABLE 5-2 for a list) cause an
illegal_instruction exception on UltraSPARC T1 and are emulated in software.

UltraSPARC T1
Implementation

Note

For the i = 0 variant of Tcc, UltraSPARC T1 does not check that
reserved instruction bit 7 is 0. If bit 7 is set to 1 with i = 0,
UltraSPARC T1 treats it as a valid Tcc instruction.

UltraSPARC T1
Programming

Note

The use of VIS instructions on UltraSPARC T1 is strongly
discouraged; the performance of even the implemented VIS
instructions will often be below that of a comparable set of non-
VIS instructions. This includes the block load and block store
instructions. An UltraSPARC T1 physical processor core (four
virtual processors) can only have a single outstanding floating-
point operation (including block load, block store, and VIS
instructions) in progress at any given time.
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5.5 Partitioned Add/Subtract Instructions
See the UltraSPARC Architecture 2005 for detailed descriptions of the FPADD and
FPSUB instructions.

5.6 Align Data
See the UltraSPARC Architecture 2005 for detailed descriptions of the FALIGNDATA
instruction.

5.7 F Register Logical Operate Instructions
See the UltraSPARC Architecture 2005 for a description of the F register logical
operate instructions (1-, 2-, and 3-operand).

UltraSPARC T1
Programming

Note

For good performance on UltraSPARC T1, the result of a single
FPADD should not be used as part of a 64-bit graphics
instruction source operand in the next instruction group.

Similarly, the result of a standard FPADD should not be used as
a 32-bit graphics instruction source operand in the next
instruction group.

UltraSPARC T1
Programming

Note

For good performance on UltraSPARC T1, the result of
FALIGNDATA should not be used as the source operand of a 32-
bit SIMD instruction in the next instruction group.

UltraSPARC T1
Programming

Note

For good performance on UltraSPARC T1, the result of a single
logical operate instruction should not be used as part of the
source operand of a 64-bit SIMD instruction in the next
instruction group.

Similarly, the result of a standard logical operate instruction
should not be used as the source operand of a 32-bit SIMD
instruction source operand in the next instruction group.
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5.8 Block Load and Store Instructions
For architectural descriptions of the LDBLOCKF and STBLOCKF instructions, see
the UltraSPARC Architecture 2005.

On UltraSPARC T1, to order an LDBLOCKF with respect to earlier stores, an
intervening MEMBAR #Sync must be executed.

Similarly on UltraSPARC T1, STBLOCKF source data registers are not interlocked
against completion of previous load instructions (even if a second LDBLOCKF has
been performed). The previous load data must be referenced by some other
intervening instruction, or an intervening MEMBAR #Sync must be performed. If
the programmer violates these rules, data from before or after the load may be used.
UltraSPARC T1 continues execution before all of the store data has been transferred.
If store data registers are overwritten before the next block store or MEMBAR #Sync
instruction, then the following rule must be observed. The first register can be
overwritten in the same instruction group as the STBLOCKF, the second register can
be overwritten in the instruction group following the block store and so on. If this
rule is violated, the store may store correct data or the overwritten data. Block stores
always operate under the relaxed memory order (RMO) memory model, regardless
of the PSTATE.mm setting, and require a subsequent MEMBAR #Sync to order them
with respect to following loads.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, a block load forces a miss in the primary
cache and will not allocate a line in the primary cache, but does
allocate in the L2 cache. On UltraSPARC T1, block loads and
stores from multiple virtual processors are not overlapped.

Compatibility
Note

These instructions were intended for use in transferring large
blocks of data (more than 256 bytes); for example, in BCOPY
and BFILL operations.

The use of block loads and stores on UltraSPARC T1 is
deprecated; they are provided primarily for compatibility with
existing software. UltraSPARC T1 provides a separate set of
ASIs for high performance BCOPY and BFILL, as described in
TABLE 9-1 on page 41. The performance of parallel BCOPY using
appropriate ASIs (from among 2216, 2316, E216, E316, EA16, and
EB16) will be 2.5 to 3.5 times that of a BCOPY using block loads
and stores. The performance of a single-threaded BCOPY using
these ASIs will be 15% to 50% better than that of a BCOPY using
block loads and stores.
18 UltraSPARC T1 Supplement • Draft D2.0, 17 Mar 2006



After an STBLOCKF instruction but before executing a DONE, RETRY, or WRPR to
PSTATE instruction, there must be an intervening MEMBAR #Sync or a trap. If this
is rule is violated, instructions after the DONE, RETRY, or WRPR to PSTATE may
not see the effects of the updated PSTATE.

On UltraSPARC T1, LDBLOCKF does not follow memory model ordering with
respect to stores. In particular, read-after-write and write-after-read hazards to
overlapping addresses are not detected. The side-effects bit associated with the
access is ignored (see Translation Table Entry (TTE) on page 53). If ordering with
respect to earlier stores is important (for example, a block load that overlaps
previous stores), then there must be an intervening MEMBAR #StoreLoad (or
stronger MEMBAR). If ordering with respect to later stores is important (for
example, a block load that overlaps a subsequent store), then there must be an
intervening MEMBAR #LoadStore or reference to the block load data. This
restriction does not apply when a trap is taken, so the trap handler need not
consider pending block loads. If the LDBLOCKF overlaps a previous or later store
and there is no intervening MEMBAR, trap, or data reference, the LDBLOCKF may
return data from before or after the store.

STBLOCKF does not follow memory model ordering with respect to loads, stores or
flushes. In particular, read-after-write, write-after-write, flush-after-write, and write-
after-read hazards to overlapping addresses are not detected. The side-effects bit
associated with the access is ignored. If ordering with respect to earlier or later loads
or stores is important, then there must be an intervening reference to the load data
(for earlier loads), or appropriate MEMBAR instruction. This restriction does not
apply when a trap is taken, so the trap handler does not have to worry about
pending block stores. If the STBLOCKF overlaps a previous load and there is no
intervening load data reference or MEMBAR #LoadStore instruction, the load may
return data from before or after the store and the contents of the block are
undefined. If the STBLOCKF overlaps a later load and there is no intervening trap or
MEMBAR #StoreLoad instruction, the contents of the block are undefined. If the
STBLOCKF overlaps a later store or flush and there is no intervening trap or
MEMBAR #StoreStore instruction, the contents of the block are undefined.

Block load and store operations do not obey the ordering restrictions of the currently
selected virtual processor memory model (always TSO in UltraSPARC T1); block
operations always execute under an RMO memory ordering model. Explicit
MEMBAR instructions are required to order block operations among themselves or
with respect to normal loads and stores. In addition, block operations do not
conform to dependence order on the issuing strand; that is, no read-after-write or
writer-after-read checking occurs between block loads and stores. Explicit
MEMBARs must be used to enforce dependence ordering between block operations
that reference the same address.

Compatibility
Note

Prior UltraSPARC machines may have written loaded data into the
first two registers at the same time. Software that depends on this
unsupported behavior must be modified for UltraSPARC T1.
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Typically, LDBLOCKF and STBLOCKF are used in loops where software can ensure
that there is no overlap between the data being loaded and the data being stored.
The loop must be preceded and followed by the appropriate MEMBARs to ensure
that there are no hazards with loads and stores outside the loops. CODE EXAMPLE 5-1
illustrates the inner loop of a byte-aligned block copy operation.

Note that the loop must be unrolled twice to achieve maximum performance. All FP
register references in this code example are to 64-bit registers. Eight versions of this
loop are needed to handle all the cases of double word misalignment between the
source and destination.

CODE EXAMPLE 5-1 Byte-Aligned Block Copy Inner Loop

loop:
faligndata %f0, %f2, %f34
faligndata %f2, %f4, %f36
faligndata %f4, %f6, %f38
faligndata %f6, %f8, %f40
faligndata %f8, %f10, %f42
faligndata %f10, %f12, %f44
faligndata %f12, %f14, %f46
addcc %l0, -1, %l0
bg,pt l1
fmovd %f14, %f48
  end of loop handling

l1: ldda [regaddr] #ASI_BLK_P, %f0
stda %f32, [regaddr] #ASI_BLK_P
faligndata %f48, %f16, %f32
faligndata %f16, %f18, %f34
faligndata %f18, %f20, %f36
faligndata %f20, %f22, %f38
faligndata %f22, %f24, %f40
faligndata %f24, %f26, %f42
faligndata %f26, %f28, %f44
faligndata %f28, %f30, %f46
addcc %l0, -1, %l0
be,pnt done
fmovd %f30, %f48
ldda [regaddr] #ASI_BLK_P, %f16
stda %f32, [regaddr] #ASI_BLK_P
ba loop
faligndata %f48, %f0, %f32

done:  end of loop processing
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5.9 Block Initializing Store ASIs
The Block Initializing Store ASIs are specific to the UltraSPARC T1
implementation and are not guaranteed to be portable to other UltraSPARC
Architecture implementations. They should only appear in platform-specific
dynamically-linked libraries or in code generated at runtime by software (for
example, a just-in-time compiler) that is aware of the specific implementation
upon which it is executing.

Instruction imm_asi
ASI

Value Operation Assembly Language Syntax

ST{B,H,W,X,D}A ASI_STBI_AIUP 2216 64-byte block initialing store
to primary address space,
user privilege

st{b,h,w,x,d}a
st{b,h,w,x,d}a

regrd, [reg_addr] imm_asi
regrd, [reg_plus_imm] %asi

ST{B,H,W,X,D}A ASI_STBI_AIUS 2316 64-byte block initialing store
to secondary address space,
user privilege

ST{B,H,W,X,D}A ASI_STBI_N 2716 64-byte block initialing store
to nucleus address space

ST{B,H,W,X,D}A ASI_STBI_AIUPL_L 2A16 64-byte block initialing store
to primary address space,
user privilege, little-endian

ST{B,H,W,X,D}A ASI_STBI_AIUSL 2B16 64-byte block initialing store
to secondary address space,
user privilege, little-endian

ST{B,H,W,X,D}A ASI_STBI_NL 2F16 64-byte block initialing store
to nucleus address space,
little-endian

ST{B,H,W,X,D}A ASI_STBI_P E216 64-byte block initialing store
to primary address space

ST{B,H,W,X,D}A ASI_STBI_S E316 64-byte block initialing store
to secondary address space

ST{B,H,W,X,D}A ASI_STBI_PL EA16 64-byte block initialing store
to primary address space,
little-endian

ST{B,H,W,X,D}A ASI_STBI_SL EB16 64-byte block initialing store
to secondary address space,
little-endian
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Description The UltraSPARC T1-specific block initializing store instructions are selected by using
one of the block-initializing ASIs with integer store alternate instructions. These ASIs
allow block-initializing stores to be performed to the same address spaces as normal
stores. Little-endian ASIs access data in little-endian format; otherwise, the access is
assumed to be big-endian.

Integer stores of all sizes are allowed with these ASIs, and STDA behaves as a
standard store doubleword. All stores to these ASIs operate under relaxed memory
ordering (RMO), regardless of the value of PSTATE.mm. Software must follow a
sequence of these stores with a MEMBAR #Sync to ensure ordering with respect to
subsequent loads and stores.

A store to one of these ASIs where the least-significant 6 bits of the address are
nonzero (that is, not the first word in the cache line) behaves the same as a normal
store (with RMO ordering).

A store to one of these ASIs where the least-significant 6 bits of the address are zero
will load a cache line in the L2 cache with either all zeros or the existing memory
data, and then update the beginning of the cache line with the new store data. This
special store behavior ensures that the line maintains coherency when it is loaded
into the cache, but will not generally fetch the line from memory (instead,
initializing it with zeroes).

A store using one of these ASIs to a noncacheable location behaves the same as a
normal store.

Attempted use of any of these ASIs by a floating-point store alternate instruction
(STFA, STDFA) causes a data_access_exception exception.

Access to any of these ASIs by an instruction with misaligned address causes a
mem_address_not_aligned exception.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, a noncacheable address is identified by .

Programming
Note

These instructions are particularly useful in combination with
load twin extended word instructions for transferring large
blocks (more than 256 bytes) of data; for example, in
implementing bcopy() and bfill() operations.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, block initializing stores and load twin
doublewords from multiple strands are fully overlapped.
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Programming
Note

The following pseudocode shows how these ASIs can be used to
do a quadword-aligned (on both source and destination) copy of
N quadwords from A to B (where N > 3). Note that the final 64
bytes of the copy is performed using normal stores, to guarantee
that all initial zeros in a cache line are overwritten with copy
data.

%l0 ← [A]; %l1 ← [B]
prefetch [%l0]
for (i = 0;  i < N-4; i++) {
   if (!(i % 4)) { prefetch [%l0+64] }
   ldda [%l0] #ASI_BLK_INIT_ST_P, %l2
   add %l0, 16, %l0
   stxa %l2, [%l1] #ASI_BLK_INIT_ST_P
   add %11, 8, %11
   stxa %l3, [%l1+8] #ASI_BLK_INIT_ST_P
   add %l1, 8, %l1
}
for (i = 0;  i < 4; i++) {
   ldda [%l0] #ASI_BLK_INIT_ST_P, %l2
   add %l0, 16, %l0
   stx %l2, [%l1]
   stx %l3, [%l1+8]
   add %l1, 16, %l1
}
membar #Sync

An overlapped copy operation must avoid issuing a block-init
store to a line before all loads from that line have been issued.
Otherwise, one or more of the loads may see the interim "zero"
side-effect value. This typically means that abs(A−B) must be
64.
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Exceptions VA_watchpoint
mem_address_not_aligned
data_access_exception

UltraSPARC T1
Programming

Notes

(1) These ASIs are specific to UltraSPARC T1, to provide a high-
performance mechanism for BCOPY operations, as an
alternative to legacy block load and block store instructions
(which rely on the floating-point register file and thus are
limited by the single register file port). These ASIs are only
allowed in platform-specific dynamically linked libararies and
in code generated at runtime by software (for example, a just-in-
time compiler) that is aware of the implementation upon which
it is executing.

(2) These ASIs provide a higher performance bcopy() or
bfill() than the block loads and stores described in
Section 5.8, due to their ability to overlap multiple loads and
stores between strands and to avoid the unnecessary fetch from
memory of the data that is overwritten by the store. The
performance of parallel bcopy() using these ASIs will be 2.5 to
3.5 times that of a bcopy() using block loads and stores. The
performance of a single-threaded bcopy() using these ASIs will
be 15% to 50% better than that of a bcopy() using block loads
and stores.
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5.10 Load Twin Extended Word Instructions
(nonprivileged)

Description Load Twin Extended Word instructions are new in the UltraSPARC Architecture
2005; they are used to atomically read a 128-bit data item into a pair of integer
registers.

See the UltraSPARC Architecture 2005 for details.

See the description of Block Initializing Stores for an example of how Load Twin
Doubleword can be used in combination with those instructions.

The Load Twin Extended Word Instructions are not guaranteed to be portable to
other UltraSPARC Architecture implementations. They should only appear in
platform-specific dynamically-linked libraries or in code generated at runtime
by software (for example, a just-in-time compiler) that is aware of the specific
implementation upon which it is executing.

Programming
Note

These instructions are particularly useful in combination with
block-initializing stores for transferring large blocks of data
(more than 256 bytes); for example, in implementing bcopy()
and bfill() operations. See the description of Block Initializing
Stores for an example of how Load Twin Extended Word can be
used in combination with those instructions.

UltraSPARC T1
Implementation

Note

On UltraSPARC T1, a load twin extended word forces a miss in
the primary cache and will not allocate a line in the primary
cache, but does allocate in L2. On UltraSPARC T1, block
initializing stores and load twin doublewords from multiple
strands are fully overlapped.
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See Also Block Initializing Store ASIs on page 21.

UltraSPARC T1
Programming

Notes

(1) These instructions, combined with store instructions using
the UltraSPARC T1-specific Block Initializing Store ASIs,
provide a high-performance mechanism for BCOPY operations,
as an alternative to legacy block load and store (which rely on
the floating-point register file and thus are limited by the single
register file port). These ASIs are only allowed in platform-
specific dynamically linked libararies and in code generated at
runtime by software (for example, a just-in-time compiler) that
is aware of the implementation upon which it is executing.

(2) These ASIs provide a higher performance bcopy() or
bfill() than the block loads and stores described in
Section 5.8, due to their ability to overlap multiple loads and
stores between strands and to avoid the unnecessary fetch from
memory of the data that is overwritten by the store. The
performance of parallel bcopy() using these ASIs will be 2.5 to
3.5 times that of a bcopy() using block loads and stores. The
performance of a single-threaded bcopy() using these ASIs will
be 15% to 50% better than that of a bcopy() using block loads
and stores.
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5.11 Load Twin Extended Word Instructions
(privileged)

† ASI 2416 (deprecated) is aliased to ASI 2716 in UltraSPARC T1.
‡ ASI 2C16 (deprecated) is aliased to ASI 2F16 in UltraSPARC T1.

Description These instructions atomically read a 128-bit data item into two 64-bit integer
registers. They are intended to be used to access TSB entries without requiring locks.
The data is placed in an even/odd pair of 64-bit integer registers. The lowest address
64 bits is placed in the even-numbered register; the highest address 64-bits is placed
in the odd-numbered register.

ASI_LDTX_REAL{_L} bypasses the virtual-to-real portion of the translation, setting
RA{63:0} = VA{63:0}.

In addition to the usual exceptions for LDTX using a privileged ASI, a
data_access_exception trap occurs if these ASIs are used with any instruction other
than LDTX or LDDA (which share an opcode). A mem_address_not_aligned trap is
taken if the access is not aligned on a 128-bit boundary.

Instruction imm_asi
ASI

Value Operation Assembly Language Syntax

LDTX ASI_LDTX_N 2716
† 128-bit atomic load ldda

ldda
[reg_addr] imm_asi, regrd
[reg_plus_imm] %asi, regrd

LDTX ASI_LDTX_REAL 2616 128-bit atomic load, real
addressing (RA{63:0} set to
VA{63:0})

LDTX ASI_LDTX_NL 2F16
‡ 128-bit atomic load, little

endian

LDTX ASI_LDTX_REAL_L 2E16 128-bit atomic load, real
addressing (RA{63:0} set to
VA{63:0}), little endian

Compatibility
Note

In previous UltraSPARC documents, these instructions were
(loosely) referred to as "Quad LDD"instructions.

11 01 0011 rs2rd rs1

4

imm_asi

5

i=0

11 01 0011rd rs1

31 141924 18 13 02530 29

simm_13i=1

12
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Exceptions VA_watchpoint
mem_address_not_aligned (Checked for opcode implied alignment if the opcode

is not LDDA)
data_access_exception
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CHAPTER 6

Traps

The UltraSPARC T1 processor implements the trap model described in the
UltraSPARC Architecture 2005.

Additional UltraSPARC T1-specific details are described in this chapter.

6.1 Trap Levels
Each UltraSPARC T1 virtual processor supports two trap levels (MAXPTL = 2) .
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CHAPTER 7

Interrupt Handling

7.0.1 Interrupt Queue Registers
Each strand has eight ASI_QUEUE registers at ASI 2516, VA{63:0} = 3C016–3F816 that
are used for communicating interrupts to the privileged mode operating system.
These registers contain the head and tail pointers for four supervisor interrupt
queues: cpu_mondo, dev_mondo, resumable_error, and nonresumable_error.

The tail registers are read-only. An attempted write to a tail register by privileged
software generate a data_access_exception trap. The head registers are read/write.

Whenever the contents of the CPU_MONDO_HEAD and CPU_MONDO_TAIL
registers are unequal, a cpu_mondo trap is generated. Whenever the contents of the
DEV_MONDO_HEAD and DEV_MONDO_TAIL registers are unequal, a dev_mondo
trap is generated. Whenever the contents of the RESUMABLE_ERROR_HEAD and
RESUMABLE_ERROR_TAIL registers are unequal, a resumable_error trap is
generated.

Unlike the other queue register pairs, the nonresumable_error trap is not
automatically generated by hardware whenever the contents of the
NONRESUMABLE_ERROR_HEAD and NONRESUMABLE_ERROR_TAIL registers
are unequal; instead, hyperprivileged software must make it appear to privileged
software as if a nonresumable_error trap has occured.

Warning There is a known “feature” in UltraSPARC T1 that affects
LDXA/STXA by supervisor code to these ASI registers. If an
immediately preceeding instruction is a store that takes certain
traps, an LDXA can corrupt an unrelated IRF (integer register
file) register, or a STXA may complete in spite of the trap. To
prevent this, it is required to have a non-store or NOP instruction
before any LDXA/STXA to these ASIs. If the LDXA/STXA is at
a branch target, there must be a non-store in the delay slot.
Nonprivileged software is not affected by this.
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TABLE 7-1 through TABLE 7-8 define the format of the eight interrupt queue registers.

Programming
Note

These registers are intended to be used as head and tail pointers
into a queue in memory storing the mondo or error interrupt
data. When an interrupt is taken, the interrupt data are stored
into the end of the appropriate queue. Then the corresponding
tail register is updated to point beyond the new data, which
causes a trap to be generated to privileged software (the
operating system). Privileged software then processes the
interrupt data from the head of the queue, updating the head
register when the interrupt processing is completed.

While the first interrupt is being serviced, more interrupts may
be placed on the queue. The operating system can read the tail
pointer to service multiple interrupts at a time, or it can simply
update the head pointer after each interrupt has been serviced
and take a trap for each interrupt.

When all pending interrupts of the appropriate type have been
serviced, the head and tail pointers will be equal again, and no
further traps will be generated until new interrupt data is placed
on the queue.

TABLE 7-1 CPU Mondo Head Pointer – QUEUE_CPU_MONDO_HEAD (ASI 2516, VA 3C016)

Bit Field R/W Description

63:14 — R Reserved

13:6 head RW Head pointer for CPU Mondo Interrupt Queue.

5:0 — R Reserved

TABLE 7-2 CPU Mondo Tail Pointer – QUEUE_CPU_MONDO_TAIL (ASI 2516, VA 3C816)

Bit Field R/W Description

63:14 — R Reserved

13:6 tail RW Tail pointer for CPU Mondo Interrupt Queue.

5:0 — R Reserved

TABLE 7-3 Device Mondo Head Pointer – QUEUE_DEV_MONDO_HEAD (ASI 2516, VA 3D016)

Bit Field R/W Description

63:14 — R Reserved

13:6 head RW Head pointer for Device Mondo Interrupt Queue.

5:0 — R Reserved
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TABLE 7-4 Device Mondo Tail Pointer – QUEUE_DEV_MONDO_TAIL (ASI 2516, VA 3D816)

Bit Field R/W Description

63:14 — R Reserved

13:6 tail RW Tail pointer for Device Mondo Interrupt Queue.

5:0 — R Reserved

TABLE 7-5 Resumable Error Head Pointer – QUEUE_RESUMABLE_HEAD (ASI 2516,
VA 3E016)

Bit Field R/W Description

63:14 — R Reserved

13:6 head RW Head pointer for Resumable Error Queue.

5:0 — R Reserved

TABLE 7-6 Resumable Error Tail Pointer – QUEUE_RESUMABLE_TAIL (ASI 2516,
VA 3E816)

Bit Field
Initial
Value R/W Description

63:14 — R Reserved

13:6 tail RW Tail pointer for Resumable Error Queue.

5:0 — R Reserved

TABLE 7-7 Nonresumable Error Head Pointer – QUEUE_NONRESUMABLE_HEAD (ASI 2516, VA 3F016)

Bit Field
Initial
Value R/W Description

63:14 — R Reserved

13:6 head RW Head pointer for NonResumable Error Queue.

5:0 — R Reserved

TABLE 7-8 Nonresumable Error Tail Pointer – QUEUE_NONRESUMABLE_TAIL (ASI 2516,
VA 3F816)

Bit Field R/W Description

63:14 — R Reserved

13:6 tail RW Tail pointer for NonResumable Error Queue.

5:0 — R Reserved
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CHAPTER 8

Memory Models

8.1 Overview
SPARC V9 defines the semantics of memory operations for three memory models.
From strongest to weakest, they are Total Store Order (TSO), Partial Store Order
(PSO), and Relaxed Memory Order (RMO). The differences in these models lie in the
freedom an implementation is allowed in order to obtain higher performance during
program execution. The purpose of the memory models is to specify any constraints
placed on the ordering of memory operations in uniprocessor and shared-memory
multiprocessor environments.

For a full description of the TSO memory model, see the UltraSPARC Architecture
2005.

UltraSPARC T1 supports only TSO, with the exception that accesses using certain
ASIs (notably, block loads and block stores) may operate under RMO (impl. dep.
#113-V9-Ms10).

Although a program written for a weaker memory model potentially benefits from
higher execution rates, it may require explicit memory synchronization instructions
to function correctly if data is shared. MEMBAR is a memory synchronization
primitive that enables a programmer to control explicitly the ordering in a sequence
of memory operations. Processor consistency is guaranteed in all memory models.

The current memory model is indicated in the PSTATE.mm field. Its value is always
0 on UltraSPARC T1. An UltraSPARC T1 virtual processor always operates under the
TSO memory model.

Memory is logically divided into real memory (cached) and I/O memory
(noncached, with and without side effects) spaces (impl. dep. #118-V9). Real memory
spaces may be cached and can be accessed without side effects. For example, a read
(load) from real memory space returns the information most recently written. In
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addition, an access to real memory space does not result in program-visible side
effects. In contrast, a read from I/O space may not return the most recently written
information and may result in program-visible side effects.

8.2 Supported Memory Models
The following sections contain brief descriptions of the two memory models
supported by UltraSPARC T1. These definitions are for general illustration. Detailed
definitions of these models can be found in UltraSPARC Architecture 2005. The
definitions in the following sections apply to system behavior as seen by the
programmer. A description of MEMBAR can be found in Section 8.3.2, “Memory
Synchronization: MEMBAR and FLUSH” on page 72.

8.2.1 Total Store Order
UltraSPARC T1 implements the following programmer-visible properties in Total
Store Order (TSO) mode:

■ Loads are processed in program order; that is, there is an implicit MEMBAR
#LoadLoad between them.

■ Loads may bypass earlier stores. Any such load that bypasses such earlier stores
must check (snoop) the store buffer for the most recent store to that address. A
MEMBAR #Lookaside is not needed between a store and a subsequent load at
the same noncacheable address.

■ A MEMBAR #StoreLoad must be used to prevent a load from bypassing a prior
store, if Strong Sequential Order is desired.

■ Stores are processed in program order.

■ Stores cannot bypass earlier loads.

■ An L2 cache update is delayed on a store hit until all outstanding stores reach
global visibility. For example, a cacheable store following a noncacheable store is
not globally visible until the noncacheable store has reached global visibility;
there is an implicit MEMBAR #MemIssue between them.

Notes (1) Stores to UltraSPARC T1 Internal ASIs, block loads, and
block stores are outside the memory model; that is, they need
MEMBARs to control ordering. See Section 8.3.8, “Instruction
Prefetch to Side-Effect Locations” on page 79 and Section 13.5.3,
“Block Load and Store Instructions” on page 172.

(2) Atomic load-stores are treated as both a load and a store and
can only be applied to cacheable address spaces.
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8.2.2 Relaxed Memory Order
UltraSPARC T1 implements the following programmer-visible properties for
accesses through special ASIs that operate under the Relaxed Memory Order (RMO)
model:

■ There is no implicit order between any two memory references, either cacheable
or noncacheable, except that noncacheable accesses to I/O space are all strongly
ordered with respect to each other.

■ A MEMBAR must be used between cacheable memory references if stronger
order is desired. A MEMBAR #MemIssue is needed for ordering of cacheable
after non-cacheable accesses. A MEMBAR #StoreLoad should be used between
a store and a subsequent load at the same noncacheable address.
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CHAPTER 9

Address Spaces and ASIs

9.1 Address Spaces
UltraSPARC T1 supports a 48-bit virtual address space.

9.1.1 Access to Nonexistent Memory or I/O
Accesses to nonexistent memory or I/O locations are treated as follows:

■ A load access from a nonexistent memory or I/O location causes an exception

■ An instruction fetch from a nonexistent memory or I/O location causes an
exception

■ A store access to a nonexistent memory or I/O location will be silently discarded
by the system

9.1.2 48-bit Virtual Address Space
UltraSPARC T1 supports a 48-bit subset of the full 64-bit virtual address space (see
FIGURE 9-1). Although the full 64 bits are generated and stored in integer registers,
legal addresses are restricted to two equal halves at the extreme lower and upper
portions of the full virtual address space. Virtual addresses between
0000 8000 0000 000016 and FFFF 7FFF FFFF FFFF16, inclusive, lie within a “VA Hole”,
are termed “out of range,” and are illegal.

Prior UltraSPARC implementations introduced the additional restriction on software
to not use pages within 4 Gbytes of the VA hole as instruction pages, to avoid
problems with prefetching into the VA hole. UltraSPARC T1 assumes that this
convention is followed, for similar reasons. Note that there are no trap mechanisms
to detect a violation of this convention.
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FIGURE 9-1 UltraSPARC T1’s 48-bit Virtual Address Space, With Hole

A number of state registers are affected by the reduced virtual address space. TBA,
TPC, and TNPC registers are 48 bits wide, sign-extended to 64 bits on read accesses.
VA watchpointing is 48 bits, zero-extended to 64-bits on read accesses. No checks are
done when these registers are written by software. It is the responsibility of
privileged software to properly update these registers.

An out of range address during an instruction access causes an
instruction_access_exception trap if PSTATE.am = 0.

If the target address of a JMPL or RETURN instruction is an out-of-range address
and PSTATE.am is not set, a trap is generated with TPC[TL] set to the address of the
JMPL or RETURN instruction. This instruction_access_exception trap is lower priority
than other traps on the JMPL or RETURN (illegal_instruction due to nonzero reserved
fields in the JMPL or RETURN, mem_address_not_aligned trap, or window_fill trap),
because it really applies to the target. The trap handler can determine the out-of-
range address by decoding the JMPL instruction from the code.

When any other control transfer instruction traps, it sets TPC[TL] to the address of
the target instruction. Because the PC is sign-extended to 64 bits, the trap handler
must adjust the PC value to compute the faulting address by xoring ones into the
most significant 16 bits.

Note Throughout this document, when virtual address fields are
specified as 64-bit quantities, bits 63:48 are assumed to be sign-
extended from bit 47.

FFFF FFFF FFFF FFFF

FFFF 8000 0000 0000

0000 0000 0000 0000

0000 7FFF FFFF FFFF

Out-of-Range VA
(“VA Hole”)

FFFF 7FFF FFFF FFFF

0000 8000 0000 0000

FFFF 8001 0000 0000

0000 7FFE FFFF FFFF

See Note (1)

See Note (1)

Note (1): Prior implementations restricted use of this region to data only.
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When a trap occurs on the delay slot of a taken branch or call whose target is out-of-
range or is the last instruction below the VA hole, UltraSPARC T1 records the fact
that NPC points to an out-of-range instruction in TNPC. If the trap handler executes
a DONE or RETRY without saving TNPC, the instruction_access_exception trap is
taken when the instruction at TNPC is executed. If TNPC is saved and subsequently
restored by the trap handler, the fact that TNPC points to an out-of-range instruction
is lost.

To guarantee that all out of range instruction accesses cause traps, software should
not map addresses within 231 bytes of either side of the VA hole as executable.

An out-of-range address during a data access results in a data_access_exception trap
if PSTATE.am is not set.

9.2 Alternate Address Spaces
TABLE 9-1 summarizes the ASI usage in UltraSPARC T1. The Section column lists
where the operation of the ASI is explained. For several internal ASIs, a range of
legal VAs is listed. An access outside the legal VA range will be aliased to a legal VA
by ignoring the upper address bits.

Notes (1) All internal, nontranslating ASIs in UltraSPARC T1 can only
be accessed using LDXA and STXA. This is different than
UltraSPARC I/II, where LDDFA and STDFA can also be used to
access internal ASIs. Using LDDFA and STDFA to access an
internal ASI in UltraSPARC T1 results in a
data_access_exception trap.

(2) ASIs 8016–FF16 are unrestricted (nonprivileged and
privileged software may access). ASIs 0016–2F16 are restricted to
privileged software.

TABLE 9-1 UltraSPARC T1 ASI Usage (1 of 5)

ASI ASI NAME R/W VA

Copy
per
strand Description Section

0016–
0316

Any — data_access_exception

0416 ASI_NUCLEUS RW Any — (See UltraSPARC Architecture
2005)

0516–
0B16

Any — data_access_exception

0C16 ASI NUCLEUS_LITTLE RW Any — (See UltraSPARC Architecture
2005)
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0D16–
0F16

Any — data_access_exception

1016 ASI_AS_IF_USER_PRIMARY RW Any — (See UltraSPARC Architecture
2005)

1116 ASI_AS_IF_USER_SECONDARY RW Any — (See UltraSPARC Architecture
2005)

1216–
1316

Any — data_access_exception

1416 ASI_REAL RW Any — (See UltraSPARC Architecture
2005)

9.2.1

1516 ASI_REAL_IO RW Any — (See UltraSPARC Architecture
2005)

9.2.2

1616 ASI_BLOCK_AS_IF_USER_PRIMARY RW Any — (See UltraSPARC Architecture
2005)

5.8

1716 ASI_BLOCK_AS_IF_USER_SECONDARY RW Any — (See UltraSPARC Architecture
2005)

5.8

1816 ASI_AS_IF_USER_PRIMARY_LITTLE RW Any — (See UltraSPARC Architecture
2005)

1916 ASI_AS_IF_USER_SECONDARY_LITTLE RW Any — (See UltraSPARC Architecture
2005)

1A16–
1B16

Any — data_access_exception

1C16 ASI_REAL_LITTLE RW Any — Nonallocating in L1 cache, same
as ASI_REAL_IO_LITTLE for
I/O addresses

9.2.1

1D16 ASI_REAL_IO_LITTLE RW Any — (See UltraSPARC Architecture
2005)

9.2.2

1E16 ASI_BLOCK_AS_IF_USER_PRIMARY_
LITTLE

RW Any — (See UltraSPARC Architecture
2005)

5.8

1F16 ASI_BLOCK_AS_IF_USER_SECONDARY_
LITTLE

RW Any — (See UltraSPARC Architecture
2005)

5.8

2016 ASI_SCRATCHPAD RW 016–
1816

Y Scratchpad registers 0–3 9.2.3

RW 2016–
2816

— data_access_exception 9.2.3

RW 3016–
3816

Y Scratchpad registers 6–7 9.2.3

2116 ASI_MMU_CONTEXTID RW 016–
F816

— (See UltraSPARC Architecture
2005)

TABLE 9-1 UltraSPARC T1 ASI Usage (2 of 5)
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2216 ASI_LDTX_AIUP,

ASI_STBI_AIUP

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUP is used for
Block-Initializing stores, As If
User, Primary Context

5.10

2316 ASI_LDTX_AIUS,

ASI_STBI_AIUS

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUS is used for
Block-Initializing stores, As If
User, Secondary Context

5.10

2416 ASI_TWINX (ASI_LDTX),
ASI_QUAD_LDDD†,
ASI_NUCLEUS_QUAD_LDDD†

R Any — 128-bit atomic Load Twin
Doubleword (deprecated;
superseded by ASI 2716)

2516 ASI_QUEUE RW 016–
3B816

— Load/store does NOP

RW 3C016
–3F816

Y (See UltraSPARC Architecture
2005)

2616 ASI_LDTX_REAL R Any — 128-bit atomic LDTX, real
address (see UltraSPARC
Architecture 2005)

5.11

2716 ASI_LDTX_N,

ASI_STBI_N

RW Any — (See UltraSPARC Architecture
2005)

ASI_STBI_N is used for Block-
Initializing stores, Nucleus
Context

5.10

2816–
2916

Any — data_access_exception

2A16 ASI_LDTX_AIUP_L,

ASI_STBI_AIUP_L

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUP_L is used for
Block-Initializing stores, As If
User, Primary Context, Little
Endian

5.10

2B16 ASI_LDTX_AIUS_L,

ASI_STBI_AIUS_L

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_AIUS_L is used for
Block-Initializing stores, As If
User, Seondary Context, Little
Endian

5.10

2C16 ASI_TWINX_LITTLE (ASI_LDTX_L),
ASI_QUAD_LDD_LITTLED†,
ASI_NUCLEUS_QUAD_LDD_LITTLED†

R Any — 128-bit atomic Load Twin
Doubleword, little endian
(deprecated; superseded by ASI
2F16)

TABLE 9-1 UltraSPARC T1 ASI Usage (3 of 5)
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2D16 Any — data_access_exception

2E16 ASI_LDTX_REAL_L R Any — 128-bit atomic LDTX, real
address, little endian (see
UltraSPARC Architecture 2005)

5.11

2F16 ASI_LDTX_NL,

ASI_STBI_NL

RW Any — (See UltraSPARC Architecture
2005)
ASI_STBI_NL is used for Block-
Initializing stores, Nucleus
context, Little-Endian

5.10

8016 ASI_PRIMARY RW Any — (See UltraSPARC Architecture
2005)

8116 ASI_SECONDARY RW Any — (See UltraSPARC Architecture
2005)

8216 ASI_PRIMARY_NO_FAULT R Any — (See UltraSPARC Architecture
2005)

8316 ASI_SECONDARY_NO_FAULT R Any — (See UltraSPARC Architecture
2005)

8416–
8716

Any — data_access_exception

8816 ASI_PRIMARY_LITTLE RW Any — (See UltraSPARC Architecture
2005)

8916 ASI_SECONDARY_LITTLE RW Any — (See UltraSPARC Architecture
2005)

8A16 ASI_PRIMARY_NO_FAULT_LITTLE R Any — (See UltraSPARC Architecture
2005)

8B16 ASI_SECONDARY_NO_FAULT_LITTLE R Any — (See UltraSPARC Architecture
2005)

8C16–
BF16

Any — data_access_exception

C016 ASI_PST8_P Any — data_access_exception1

C116 ASI_PST8_S Any — data_access_exception1

C216 ASI_PST16_P Any — data_access_exception1

C316 ASI_PST16_S Any — data_access_exception1

C416 ASI_PST32_P Any — data_access_exception1

C516 ASI_PST32_S Any — data_access_exception1

C616–
C716

Any — data_access_exception

C816 ASI_PST8_PL Any — data_access_exception1

C916 ASI_PST8_SL Any — data_access_exception1

CA16 ASI_PST16_PL Any — data_access_exception1

CB16 ASI_PST16_SL Any — data_access_exception1

TABLE 9-1 UltraSPARC T1 ASI Usage (4 of 5)
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CC16 ASI_PST32_PL Any — data_access_exception1

CD16 ASI_PST32_SL Any — data_access_exception1

CE16–
CF16

Any — data_access_exception

D016 ASI_FL8_P Any — data_access_exception2

D116 ASI_FL8_S Any — data_access_exception2

D216 ASI_FL16_P Any — data_access_exception2

D316 ASI_FL16_S Any — data_access_exception2

D416–
D716

Any — data_access_exception

D816 ASI_FL8_PL Any — data_access_exception2

D916 ASI_FL8_SL Any — data_access_exception2

DA16 ASI_FL16_PL Any — data_access_exception2

DB16 ASI_FL16_SL Any — data_access_exception2

DC16–
DF16

Any — data_access_exception

E016 ASI_BLK_COMMIT_P RW Any — data_access_exception3

E116 ASI_BLK_COMMIT_S RW Any — data_access_exception3

E416–
E916

Any — data_access_exception

EC16–
EF16

Any — data_access_exception

F016 ASI_BLK_P RW Any — 64-byte block load/store,
primary address

5.8

F116 ASI_BLK_S RW Any — 64-byte block load/store,
secondary address

5.8

F216–
F716

Any — data_access_exception

F816 ASI_BLK_PL RW Any — 64-byte block load/store,
primary address, little endian

5.8

F916 ASI_BLK_SL RW Any — 64-byte block load/store,
secondary address, little endian

5.8

FA16–
FF16

Any — data_access_exception

 †  This ASI name has been changed, for consistency; although use of this name is deprecated and software should use the new name,
 the old name is listed here for compatibility.
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9.2.1 ASI_REAL and ASI_REAL_LITTLE

This ASI is used to bypass the data MMU for memory addresses. Since the cp page
attribute bit is clear, load accesses using this ASI will always fetch their data from
the L2 cache. Using this ASI for an I/O address is permitted, and will follow the
same page attributes (w = 1, all other attributes 0).

9.2.2 ASI_REAL_IO and ASI_REAL_IO_LITTLE

This ASI is used to bypass the data MMU for I/O addresses. The physical page
attributes e and w are set to 1 and all other attribute bits are set to 0 for accesses to
this ASI. Using this ASI for a memory address is permitted, and will follow the same
page attributes (e = 1, w = 1, all other attributes 0).

9.2.3 ASI_SCRATCHPAD

Each strand has a set of six privileged ASI_SCRATCHPAD registers, accessed through
ASI 2016 with VA{63:0} = 016, 816, 1016, 1816, 3016, or 3816. These registers are for
scratchpad use by privileged software. VA 2016 and 2816 may be used to access two
additional scratchpad registers. However, access to those two scratchpad registers
will be much slower than to the other six (because accesses to them will cause a trap
and the access will be emulated).

TABLE 9-2 defines the format of these registers.

1. ASIs C016–C516, C816–CD16, D016–D316, D816–DB16, and E016–E116 are checked for a VA watchpoint and will generate a VA_Watchpoint
trap if the watchpoint conditions are met. They are also checked for word-alignment and doubleword-alignment on STDFA, and will
generate a mem_address_not_aligned trap if the effective address (R[rs1] + R[rs2]; note that R[rs2] is not used as a mask) is not word-
aligned or a stdf_mem_address_not_aligned trap is the address is word-aligned, but not doubleword-aligned.

2. ASIs D016–D316 and D816–DB16 are checked for a VA watchpoint and will generate a VA_Watchpoint trap if the watchpoint conditions
are met. They are also checked for word-alignment and doubleword-alignment on STDFA and LDDFA, and will generate a
mem_address_not_aligned trap if the address is not word-aligned or a stdf_mem_address_not_aligned/
lddf_mem_address_not_aligned trap is the address is word-aligned, but not doubleword-aligned.

3. ASIs E016–E116 are checked for a VA watchpoint and will generate a VA_Watchpoint trap if the watchpoint conditions are met. They are
also checked for word-alignment and doubleword-alignment on STDFA, and will generate a mem_address_not_aligned trap if the ad-
dress is not word-aligned or a stdf_mem_address_not_aligned trap is the address is word-aligned, but not doubleword-aligned.

Programming
Note

Although it is permitted to use ASI_REAL (or
ASI_REAL_LITTLE) for an I/O access, it is not recommended
to do so because the e bit is not set for the access. ASI_REAL_IO
and ASI_REAL_IO_LITTLE should be used instead.

Note An atomic load-store operation is not permitted to these ASIs;
an attempt to execute one will result in a data_access_exception
exception.
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TABLE 9-2 Scratchpad – ASI_SCRATCHPAD (ASI 2016; VA 016, 816, 1016, 1816, 3016, or 3816)

Bit Field R/W Description

63:0 scratchpad RW Scratchpad.

Warning There is a known “feature” in UltraSPARC T1 that affects
LDXA/STXA by privileged code to these ASI registers. If an
immediately preceeding instruction is a store that takes a trap,
an LDXA can corrupt an unrelated IRF (integer register file)
register, or a STXA may complete in spite of the trap. To prevent
this, it is required to have a non-store or NOP instruction before
any LDXA/STXA to this ASI. If the LDXA/STXA is at a branch
target, there must be a non-store in the delay slot. Nonprivileged
software is not affected by this.
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CHAPTER 10

Performance Instrumentation

10.1 Performance Control Register
Each virtual processor has a privileged Performance Control register (PCR).
Nonprivileged accesses to this register cause a privileged_opcode trap. The
performance control register contains six fields: ovfh, ovfl, sl, ut, st, and priv.

■ ovfh and ovfl are state bits associated with the PIC.h and PIC.l overflow traps and
are provided in this register to allow swapping out of a process that is in the state
between the counter overflowing and the overflow trap being generated.

■ sl controls which events are counted in PIC.l.

■ ut controls whether user-level (nonprivileged) events are counted.

■ st controls whether supervisor-level (privileged) events are counted.

■ priv controls whether the PIC register can be read or written by nonprivileged
software.

The format of this register is shown in TABLE 10-1. Note that changing the fields in
PCR does not affect the PIC values. To change the events monitored, software needs
to disable counting via PCR, reset the PIC, and then enable the new event via the
PCR.

TABLE 10-1 Performance Control Register – PCR (ASR 1016)

Bit Field Initial Value R/W Description

63:10 — 0 R Reserved

9 ovfh 0 RW If 1, PIC.h has overflowed, and the next count event will
cause a disrupting trap to hyperprivileged software. The
trap will appear to be precise to the instruction following
the event.

8 ovfl 0 RW If 1, PIC.l has overflowed

7 — 0 R Reserved
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TABLE 10-2 contains the settings for the sl field.

6:4 sl 0 RW Selects one of eight events to be counted for PIC.l, per
TABLE 10-2.

3 — 0 R Reserved

2 ut 0 RW If ut = 1, count events in user mode; otherwise, ignore
user mode events.

1 st 0 RW If st = 1, count events in supervisor mode; otherwise,
ignore supervisor mode events.

0 priv 0 RW If priv = 1, prevent access to PIC by user-level code. If
priv = 0, allow access to PIC by user-level code.

TABLE 10-2 sl Field Settings

Event Names Encoding PIC Description

Instr_cnt sl = XXX H Number of completed instructions. Annulled, mispredicted, or trapped
instructions are not counted.1

1. Tcc instructions that are cancelled due to encountering a higher-priority trap are still counted.

SB_full sl = 000 L Number of store buffer full cycles.2

2. SB_full increments every cycle a strand (virtual processor) is stalled due to a full store buffer, regardless of whether other strands are
able to keep the processor busy. The overflow trap for SB_full is not precise to the instruction following the event that occurs when ovfl
is set (the trap may occur on either the instruction following the event that occurs when ovfl is set, or on either of the next two instruc-
tions).

FP_instr_cnt sl = 001 L Number of completed floating-point instructions.3 Annulled or trapped
instructions are not counted.

3. Only floating point instructions which execute in the shared FPU are counted. The following instructions are executed in the shared
FPU: FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FDIVS, FDIVD, FSMULD, FSTOX, FDTOX, FXTOS, FXTOD, FITOS, FDTOS,
FITOD, FSTOD, FSTOI, FDTOI, FCMPS, FCMPD, FCMPES, FCMPED.

IC_miss sl = 010 L Number of instruction cache (L1) misses.

DC_miss sl = 011 L Number of data cache (L1) misses for loads (store misses are not included as
the cache is write-through, non-allocating).

ITLB_miss sl = 100 L Number of instruction TLB miss trap taken (includes real_translation
misses).

DTLB_miss sl = 101 L Number of data TLB miss trap taken (includes real_translation misses).

L2_imiss sl = 110 L Number of secondary cache (L2) misses due to instruction cache requests.

L2_dmiss_ld sl = 111 L Number of secondary cache (L2) misses due to data cache load requests.4

4. L2 misses due to stores cannot be counted by the performance instrumentation logic.

TABLE 10-1 Performance Control Register – PCR (ASR 1016)

Bit Field Initial Value R/W Description
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10.2 SPARC Performance Instrumentation
Counter
Each strand (virtual processor) has a Performance Instrumentation Counter register
(PIC). Access privilege to PIC is controlled by the setting of PCR.priv. When
PCR.priv = 1, a nonprivileged access to this register causes a privileged_action trap.
The PIC counter contains two fields, h and l. The PIC.h field always counts the
number of completed instructions. The PIC.l field counts the event selected by
PCR.sl.

The ut and st fields for PCR control whether events from user (nonprivileged) mode,
supervisor (privileged) mode, both, or neither are counted. Whenever PCR.ovfh is
set (which normally occurs when the PIC.h counter overflows, but may also be set
via a write to the PCR), a disrupting trap is generated on the next event that
increments the counter.. This trap will appear to be precise to the instruction
following the one that caused the event

The format of the PIC register is shown in TABLE 10-3.

Programming
Note

A WRasr to PCR that modifies the ovfh or ovfl bit behaves as if
the ovfh or ovfl bit was modified before the WRasr is executed.

This implies that if all of the following conditions are true, a
performance counter overflow trap will be taken (to
hyperprivileged software) on the instruction following the
WRasr:

• a WRasr is executed in privileged mode that sets ovfh or ovfl to 1
• PCR.st = 1
• the WRasr generates the event being counted

TABLE 10-3 Performance Instrumentation Counter Register – PIC (ASR 1116)

Bit Field Initial Value R/W Description

63:32 h 0 RW Instruction counter.

31:0 l 0 RW Programmable event counter, event controlled by PCR.sl.
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CHAPTER 11

Memory Management

11.1 Translation Table Entry (TTE)
The Translation Table Entry (TTE) holds information for a single page mapping. The
TTE is broken into two 64-bit words, representing the tag and data of the translation.
Just as in a hardware cache, the tag is used to determine whether there is a hit in the
TSB. If there is a hit, the data is fetched by software.

11.1.1 TTE Tag Format
UltraSPARC T1 supports both the UltraSPARC Architecture 2005 TTE tag format (as
described in the UltraSPARC Architecture 2005 specification; also known as the
"sun4v" TTE format) and the older sun4u TTE tag format.

Note that UltraSPARC T1 only supports 13-bit context IDs; therefore, the most
significant 3 bits of the (16-bit) context field are always zero.

UltraSPARC T1 supports 48-bit virtual addresses in hardware. When hardware
writes a 48-bit virtual address into a 64-bit register, it sign-extends (copies) the most
significant address bit (bit 47) into bits 63:48 of the register.

11.1.2 TTE Data Format
For the data portion of the TTE, both the sun4v and sun4u formats are supported by
UltraSPARC T1. The sun4v TTE data format is described in the UltraSPARC
Architecture 2005 specification.

UltraSPARC Architecture 2005 specifies a 4-bit size field for TTE entries. Since
UltraSPARC T1 only supports a 3-bit size field, the most significant bit of TTE (bit 3)
is ignored when written.
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In the sun4u TTE virtual address tag, bits 63:22 are used. Bits 21 through 13 are not
maintained in the tag, since these bits are used to index the smallest direct-mapped TSB of
512 entries.

The sun4u TTE data format is shown in TABLE 11-1.

TABLE 11-2 provides UltraSPARC T1-specific information regarding sun4u TTE data
fields.

TABLE 11-1 Format 16 Sun4u TTE Data Format

Bit Field Description

63 v Valid

62:61 szl size{1:0}

60 nfo No-fault-only

59 ie Invert endianness

58:49 soft2 Soft2

48 szh size{2}

47:40 diag Diagnostic

39:13 pa PA{39:13}

12:8 soft Soft

7 — Reserved

6 l Locked

5 cp Cacheable in physically indexed cache

4 cv Cacheable in virtually indexed cache

3 e Side effect

2 p Privileged

1 w Writable

0 — Reserved

TABLE 11-2 TTE Field Description

Field Description

nfo No-Fault-Only..

ie Invert Endianness.

soft, soft2 Software-defined fields, provided for use by the operating system. Software fields are
not implemented in UltraSPARC T1 hardware.

diag Used by diagnostics

pa The physical page number.

l Lock. If this bit is set, the TTE entry will be “locked down”.

w Writable.
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11.2 Translation Storage Buffer
A Translation Storage Buffer (TSB) is an array of TTEs managed entirely by software.
It serves as a cache of the Software Translation Table. The discussion in this section
assumes the use of hardware support for TSB access, although the operating system
is not required to make use of this support hardware.

Inclusion of the TLB entries in a TSB is not required; that is, translation information
may exist in the TLB that is not present in the TSB.

A TSB is arranged as a direct-mapped cache of TTEs.The n least significant bits of a
virtual page number is used as the offset from the respective TSB base address,
where n equals log2 of the number of TTEs in the TSB.

A bit in the TSB register allows the PS0 and PS1 pointers to be computed for the case
of separate or split PS0/PS1 TSB(s).

No hardware TSB indexing support is provided for TTEs of pages other than PS0
and PS1. Since the TSB is entirely software managed, however, the operating system
may choose to place these different page TTEs in the TSB by forming the appropriate
pointers. In addition, simple modifications to the PS0 and PS1 index pointers
provided by the hardware allow formation of an M-way set-associative TSB,
multiple TSBs per page size, and multiple TSBs per process.

The TSB exists as a normal data structure in memory, and therefore may be cached.
Indeed, the speed of the TLB miss handler relies on the TSB accesses hitting the
level-2 cache at a substantial rate. This policy may result in some conflicts with
normal instruction and data accesses, but the dynamic sharing of the level-2 cache
resource should provide a better overall solution than that provided by a fixed
partitioning.

FIGURE 13-1 shows both the common and shared TSB organization. The constant n is
determined by the size field in the TSB register; it may range from 512 entries to
16 M entries.
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FIGURE 11-1 TSB Organization
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11.3 MMU-Related Faults and Traps
MMU traps are described in TABLE 11-3.

TABLE 11-3 MMU Trap Description

Trap Description

data_access_exception Occurs when one of the following events (the D-MMU does not prioritize
these and may set multiple bits) occurs:
• The D-MMU detects a privilege violation for a data access; that is, an

attempted access to a privileged page when PSTATE.priv = 0.
• A speculative (nonfaulting) load instruction issued to a page marked

with the side-effect (e) bit = 1.
• An atomic instruction issued to an I/O address (that is, VA{39} = 1).
• An invalid LDA/STA ASI value, invalid virtual address, read to write-

only register, or write to read-only register, but not for an attempted
user access to a restricted ASI (see the privileged_action trap described
below)

• An access with an ASI other than
ASI_<PRIMARY,SECONDARY>_NO_FAULT[_LITTLE] to a page marked
with the nfo (no-fault-only) bit.

• Virtual address out of range and PSTATE.am is not set. See 48-bit
Virtual Address Space on page 39 for details.

instruction_access_exception Occurs when the I-MMU is enabled and one of the following happens:
• The I-MMU detects a privilege violation for an instruction fetch; that is,

an attempted access to a privileged page when PSTATE.priv = 0.
• Virtual address out of range and PSTATE.am is not set. See 48-bit

Virtual Address Space on page 39. Note that the case of JMPL/RETURN
and branch-CALL-sequential are handled differently.

mem_address_not_aligned Occurs when a load, store, atomic, or JMPL/RETURN instruction with a
misaligned address is executed.

privileged_action Occurs when an access is attempted using a restricted ASI while in
nonprivileged mode (PSTATE.priv = 0).

VA_watchpoint Occurs when virtual watchpoints are enabled and the D-MMU detects a
load or store to the virtual address specified by the VA Data Watchpoint
register.
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CHAPTER 12

Implementation Dependencies

12.1 SPARC V9 General Information

12.1.1 Level-2 Compliance (Impl. Dep. #1)
UltraSPARC T1 is designed to meet Level-2 SPARC V9 compliance. It does the
following:

■ Correctly interprets all nonprivileged operations, and

■ Correctly interprets all privileged elements of the architecture.

12.1.2 Unimplemented Opcodes, ASIs, and ILLTRAP
SPARC V9 unimplemented instructions, reserved instructions, ILLTRAP opcodes, and
instructions with invalid values in reserved fields (other than reserved FPops and the
reserved field in the Tcc instruction) encountered during execution cause an
illegal_instruction trap. Reserved FPops cause an fp_exception_other (with
FSR.ftt = unimplemented_FPop) trap. Unimplemented and reserved ASI values cause
a data_access_exception trap.

12.1.3 Trap Levels (Imp. Dep. #37, 38, 39, 40, 101, 114,
115)
UltraSPARC T1 supports two trap levels; that is, MAXPTL = 2. Normal execution is at
TL = 0.

Note System emulation routines (for example, for quad-precision
floating-point operations) shipped with UltraSPARC T1 also
must be Level-2 compliant.
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A strand normally executes at trap level 0 (execute_state, TL = 0). In SPARC V9,
a trap makes the CPU enter the next higher trap level, which is a fast and efficient
process because there is one set of trap state registers for each trap level. After
saving the most important machine states (PC, NPC, PSTATE) on the trap stack at
this level, the trap (or error) condition is processed.

12.1.4 Trap Handling (Imp. Dep. #16, 32, 33, 35, 36, 44)
UltraSPARC T1 supports precise trap handling for all operations except for
disrupting traps from hardware failures and interrupts. UltraSPARC T1 implements
precise traps, interrupts, and exceptions for all instructions, including long latency
floating-point operations.

UltraSPARC T1 can efficiently execute kernel code even in the event of multiple
nested traps, promoting processor efficiency while dramatically reducing the system
overhead needed for trap handling. Three sets of global registers are
provided(MAXPGL = 2), for use at TL = 0, TL = 1, and TL = 2.

This further increases OS performance, providing fast trap execution by avoiding the
need to save and restore registers while processing exceptions.

All traps supported in UltraSPARC T1 are listed in the “Traps” chapter of this
document.

12.1.5 Population Count Instruction (POPC)
The population count instruction, POPC, generates an illegal_instruction exception
and is emulated in software rather that being executed in hardware.

12.1.6 Secure Software
To establish an enhanced security environment, it may be necessary to initialize
certain strand states between contexts. Examples of such states are the contents of
integer and floating-point register files, condition codes, and state registers. See also
Clean Window Handling (Impl. Dep. #102).

12.1.7 Address Masking (Impl. Dep. #125)
When PSTATE.am = 1, the CALL, JMPL, and RDPC instructions and all traps
transmit zero in the high-order 32-bits of the PC to their specified destination
registers. Traps also transmit zero in the high-order 32-bits of the NPC to the TNPC.
Branch target addresses sent to the NPC and the updating of NPC with NPC+4 for a
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non-control-transferring instruction do not zero the high-order 32-bits. Restoration
of PC and NPC from TPC and TNPC on a DONE or RETRY instruction do not mask
the high-order 32-bits.

12.2 SPARC V9 Integer Operations

12.2.1 Integer Register File and Window Control
Registers (Impl. Dep. #2)
UltraSPARC T1 implements an eight-window 64-bit integer register file; that is,
N_REG_WINDOWS = 8. UltraSPARC T1 truncates values stored in the CWP,
CANSAVE, CANRESTORE, CLEANWIN, and OTHERWIN registers to three bits. This
includes implicit updates to these registers by SAVE(D) and RESTORE(D)
instructions. The most-significant two bits of these registers read as zero.

12.2.2 SAVE Instruction
Upon a SAVE instruction, UltraSPARC T1 initializes the values of the local registers
in the new window to the same values as the local registers in the old window and
initializes the values of the out registers in the new window to the same values as the
in registers in the old window (that is, the new window matches the old window
with the ins and outs swapped). Since this implies that they contain values from the
executing process, V9 compliance is maintained. In this sense, the behavior of the
SAVE instruction on UltraSPARC T1 differs from most other SPARC V9
implementations.1

Note When PSTATE.am = 1, address masking applies to all VAs, even
those that immediately do a VA-to-RA bypass. This implies that
with PSTATE.am = 1, RA{63:32} will be zeros after a VA-to-RA
bypass.

1. Most SPARC V9 processors do not initialize the local and out registers on a save instruction; instead, the values
in the local and out registers are those left there from the last time the window was used.
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12.2.3 Clean Window Handling (Impl. Dep. #102)
SPARC V9 introduced the concept of “clean window” to enhance security and
integrity during program execution. A clean window is defined to be a register
window that contains either all zeroes or addresses and data that belong to the
current context. The CLEANWIN register records the number of available clean
windows.

When a SAVE instruction requests a window and there are no more clean windows,
a clean_window trap is generated. Note that the behavior on a clean_window trap for
UltraSPARC T1 is the same as for a SAVE instruction, namely, the local registers for
the new window remain the same as the local registers from the old window, while
the out registers in the new window contain the contents of the in registers from the
old window. Thus, while UltraSPARC T1 generates a clean_window trap, the new
window is automatically cleaned by hardware. System software only needs to
increment CLEANWIN before returning to the requesting context.

12.2.4 Integer Multiply and Divide
Integer multiplications (MULScc, SMUL{cc}, MULX) and divisions (SDIV{cc},
UDIV{cc}, UDIVX) are executed directly in hardware.

12.2.5 MULScc
SPARC V9 does not define the value of xcc and R[rd]{63:32} for MULScc.
UltraSPARC T1 sets xcc and rd based on the results of adding either (32 copies of
R[rs1]{63}:: CCR.icc.n xor CCR.icc.v, R[rs1]{31:1}) or 0 (depending on Y{0}) to either
R[rs2]{63:0} or the immediate operand.

12.3 SPARC V9 Floating-Point Operations

12.3.1 Subnormal Operands and Results: Nonstandard
Operation
UltraSPARC T1 handles all cases of subnormal operands or results directly in
hardware.
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Because there is no trapping on subnormal operands, UltraSPARC T1 does not
support the nonstandard result option of the SPARC V9 architecture, and the FSR.ns
bit ignores any value written to it and always returns zero on a read.

12.3.2 Overflow, Underflow, and Inexact Traps (Impl.
Dep. #3, 55)
UltraSPARC T1 implements precise floating-point exception handling. Underflow is
detected before rounding.

12.3.3 Quad-Precision Floating-Point Operations (Impl.
Dep. #3)
All quad-precision floating-point instructions, listed in TABLE 12-1, cause an
fp_exception_other (with FSR.ftt = 3, unimplemented_FPop) trap. These operations are
emulated in system software.

Note Major performance degradation may be observed while running
with the inexact exception enabled.

TABLE 12-1 Unimplemented Quad-Precision Floating-Point Instructions

Instruction Description

F{s,d}TOq Convert single-/double- to quad-precision floating-point

F{i,x}TOq Convert 32-/64-bit integer to quad-precision floating-point

FqTO{s,d} Convert quad- to single-/double-precision floating-point

FqTO{i,x} Convert quad-precision floating-point to 32-/64-bit integer

FCMP{E}q Quad-precision floating-point compares

FMOVq Quad-precision floating-point move

FMOVqcc Quad-precision floating-point move, if condition is satisfied

FMOVqr Quad-precision floating-point move if register match condition

FABSq Quad-precision floating-point absolute value

FADDq Quad-precision floating-point addition

FDIVq Quad-precision floating-point division

FdMULq Double- to quad-precision floating-point multiply

FMULq Quad-precision floating-point multiply
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12.3.4 Floating-Point Square Root
The three floating-point square root instructions: FSQRTS, FSQRTD, FSQRTQ are
unimplemented. Execution of any of these instructions results in an
fp_exception_other exception, with FSR.ftt= unimplemented_FPop.

12.3.5 Floating-Point Upper and Lower Dirty Bits in
FPRS Register
The FPRS_dirty_upper (du) and FPRS_dirty_lower (dl) bits in the Floating-Point
Registers State (FPRS) register are set when an instruction that modifies the
corresponding upper and lower half of the floating-point register file is issued.
Floating-point register file modifying instructions include floating-point operate,
graphics, floating-point loads, and block load instructions.

The FPRS.du and FPRS.dl may be set pessimistically, even though the instruction
that modified the floating-point register file is nullified due to a trap. This includes
the case where the floating-point instruction itself takes a fp_disabled trap.

FNEGq Quad-precision floating-point negation

FSQRTq Quad-precision floating-point square root

FSUBq Quad-precision floating-point subtraction

TABLE 12-1 Unimplemented Quad-Precision Floating-Point Instructions (Continued)

Instruction Description
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12.3.6 Floating-Point State Register (FSR) (Impl. Dep.
#13, 19, 22, 23, 24)
UltraSPARC T1 supports precise-traps and implements all three exception fields
(tem, cexc, and aexc) conforming to IEEE Standard 754-1985. TABLE 12-2 defines the
register bits.

TABLE 12-2 Floating-Point Status Register Format

Bits Field RW Description

63:38 — R Reserved

37:36 fcc3 RW Floating-point condition code (set 3). One of four sets of 2-bit floating-point
condition codes, which are modified by the FCMP{E} (and LD{X}FSR)
instructions. The FBfcc, FMOVcc, and MOVcc instructions use one of these
condition code sets to determine conditional control transfers and conditional
register moves.

35:34 fcc2 RW Floating-point condition code (set 2). See fcc3.

33:32 fcc1 RW Floating-point condition code (set 1). See fcc3.

31:30 rd RW IEEE Std. 754-1985 rounding direction. Rounding modes are shown
below.

29:28 — R Reserved

27:23 tem RW 5-bit trap enable mask for the IEEE-754 floating-point exceptions. If a floating-
point operate instruction produces one or more exceptions, the corresponding
cexc/aexc bits are set and an fp_exception_ieee_754 (with FSR.ftt = 1,
IEEE_754_exception) exception is generated.

22 ns R Nonstandard floating-point results. Always 0: UltraSPARC T1 produces IEEE-
754 compatible results.

21:20 — R Reserved

19:17 ver R FPU version number. Identifies a particular implementation of the UltraSPARC
T1 FPU architecture.

16:14 ftt R Floating-point trap type. The 3-bit floating point trap type field is set whenever
an floating-point instruction causes the fp_exception_ieee_754 or
fp_exception_other traps. Trap types are listed in TABLE 12-4, below.

13: qne R Floating-point deferred-trap queue (FQ) not empty. Not used, because
UltraSPARC T1 implements precise floating-point exceptions.

12 — R Reserved

rd Round Toward

0 Nearest (even if tie)

1 0

2 +∞
3 –∞
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11:10 fcc0 RW Floating-point condition code (set 0). See fcc3.
Note: fcc0 is the same as fcc in SPARC V8.

9:5 aexc RW 5-bit accrued exception field. Accumulates IEEE 754 exceptions while floating-
point exception traps are disabled (that is, FSR.tem = 0).

4:0 cexc RW 5-bit current exception field indicates the most recently generated IEEE 754
exceptions.

Note fcc0 is the same as the fcc in SPARC V8.

TABLE 12-3 Floating-Point Rounding Modes

rd Round Toward

0 Nearest (even if tie)

1 0

2 +∞

3 –∞

TABLE 12-4 Floating-Point Trap Type Values

ftt Floating-Point Trap Type Trap Signaled

0 None —

1 IEEE_754_exception fp_exception_ieee_754

2 unfinished_FPop —

3 unimplemented_FPop fp_exception_other

4 sequence_error —

5 hardware_error —

6 invalid_fp_register —

7 reserved —

Notes (1) UltraSPARC T1 neither detects nor generates the
unfinished_FPop, sequence_error, hardware_error or
invalid_fp_register trap types directly in hardware.

(2) UltraSPARC T1 does not contain an FQ. An attempt to read
the FQ with a RDPR instruction causes an illegal_instruction trap.

TABLE 12-2 Floating-Point Status Register Format (Continued)

Bits Field RW Description
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12.4 SPARC V9 Memory-Related Operations

12.4.1 Load/Store Alternate Address Space (Impl. Dep.
#5, 29, 30)
Supported ASI accesses are listed in Alternate Address Spaces on page 41.

12.4.2 Read/Write ASR (Impl. Dep. #6, 7, 8, 9, 47, 48)
Supported ASRs are discussed in Ancillary State Registers (ASRs) on page 7.

12.4.3 FLUSH and Self-Modifying Code (Impl. Dep.
#122)
FLUSH is needed to synchronize code and data spaces after code space is modified
during program execution. FLUSH is described in Supported Memory Models on page
36. On UltraSPARC T1, the FLUSH effective address is ignored, and as a result,
FLUSH can not cause a data_access_exception trap.

Note SPARC V9 specifies that the FLUSH instruction has no latency
on the issuing strand. In other words, a store to instruction
space prior to the FLUSH instruction is visible immediately after
the completion of FLUSH. MEMBAR #StoreStore is required
to ensure proper ordering in multiprocessing system when the
memory model is not TSO. When a MEMBAR #StoreStore,
FLUSH sequence is performed, UltraSPARC T1 guarantees that
earlier code modifications will be visible across the whole
system.
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12.4.4 PREFETCH{A} (Impl. Dep. #103, 117)
For UltraSPARC T1, PREFETCH{A} instructions follow TABLE 12-5 based on the fcn
value. All prefetches in UltraSPARC T1 are weak (on an MMU miss or when the
MMU is bypassed the prefetch is dropped). The only trap that a prefetch can
generate on UltraSPARC T1 is illegal_instruction (for fcn = 516–F16).

PREFETCHA is legal for all implemented ASIs in UltraSPARC T1 and will prefetch
into the Level 2 cache from memory using the context listed in TABLE 12-6.
Prefetching is done regardless of privilege level (for example, user mode can use ASI
1016 to prefetch into the L2 cache).

TABLE 12-5 PREFETCH{A} Variants

fcn Prefetch Function Action

016 Weak prefetch for several reads Weak prefetch into Level 2 cache

116 Weak prefetch for one read

216 Weak prefetch for several writes

316 Weak prefetch for one write

416 Prefetch Page No operation

516–F16 - Illegal_instruction trap.

1016 Invalidate read-once prefetch Weak prefetch into Level 2 cache

1116 Prefetch for read to nearest unified
cache

Weak prefetch into Level 2 cache

1216–1316 Strong prefetches Weak prefetch into Level 2 cache

1416 Strong prefetch for several reads Weak prefetch into Level 2 cache

1516 Strong prefetch for one read

1616 Strong prefetch for several writes

1716 Strong prefetch for one write

1816-1F16 — No operation

TABLE 12-6 PREFETCH{A} ASIs

Context ASIs (hexadecimal)

Primary 10, 16, 18, 1E, 22, 2A, 80, 82, 88, 8A, C0, C2, C4, C8, CA, CC, D0, D2,
D8, DA, E0, E2, EA, F0, F8

Secondary 11, 17, 19, 1F, 23, 2B, 81, 83, 89, 8B, C1, C3, C5, C9, CB, CD, D1, D3,
D9, DB, E1, E3, EB, F1, F9

Nucleus 04, 0C, 14, 15, 1C, 1D, 20, 21, 24, 25, 26, 27, 2C, 2E, 2F, 31, 32, 33, 35,
36, 37, 39, 3A, 3B, 3D, 3E, 3F, 40, 42, 43, 44, 45, 46, 47, 4B, 4C, 4D, 4F,
50, 51, 52, 54, 55, 56, 57, 58, 59, 5A, 5B, 5C, 5D, 5E, 5F, 60, 66, 67, 72,
73, 74
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12.4.5 Instruction Prefetch
UltraSPARC T1 does not implement an instruction prefetch. No prefetching is
performed from the effective address of the BPN instruction.

12.4.6 LDTW/STTW Handling (Impl. Dep. #107, 108)
LDTW and STTW instructions are directly executed in hardware.

12.4.7 Floating-Point mem_address_not_aligned (Impl.
Dep. #109, 110, 111, 112)
LDDF{A}/STDF{A} cause an LDDF/STDF mem_address_not_aligned trap if the
effective address is 32-bit aligned but not 64-bit (doubleword) aligned.

LDQF{A}/STQF{A} are not directly executed in hardware; they cause an
illegal_instruction trap.

12.4.8 Supported Memory Models (Impl. Dep. #113, 121)
UltraSPARC T1 supports only the TSO memory model, although certain specific
operations such as block loads and stores operate under the RMO memory model.
See Supported Memory Models on page 36.

12.4.9 Implicit ASI when TL > 0 (Impl. Dep. #124)
UltraSPARC T1 matches all UltraSPARC Architecture implementations, and makes
the implicit ASI for instruction fetching ASI_NUCLEUS when TL > 0, while the
implicit ASI for loads and stores when TL > 0 is ASI_NUCLEUS if PSTATE.cle = 0 or
ASI_NUCLEUS_LITTLE if PSTATE.cle = 1.

Implementation
Note

Although it would have been desirable to treat PREFETCHA to
restricted ASIs by underprivileged code as NOPs, PREFETCH
only moves data between main memory and the L2 cache, so
UltraSPARC T1’s implementation causes no security issues.

Note LDTW/STTW were deprecated in SPARC V9. In UltraSPARC
T1, it is more efficient to use LDX/STX for accessing 64-bit data.
LDTW/STTW take longer to execute than two 32-/64-bit loads/
stores.
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12.5 Non-SPARC V9 Extensions

12.5.1 Cache Subsystem
UltraSPARC T1 contains one or more levels of cache. The cache subsystem
architecture is described in Appendix F, Caches and Cache Coherency.

12.5.2 Block Memory Operations
UltraSPARC T1 supports 64-byte block memory operations utilizing a block of eight
double-precision floating point registers as a temporary buffer. See Block Load and
Store Instructions on page 18.

12.5.3 Partial Stores
UltraSPARC T1 does not support 8-/16-/32-bit partial stores to memory.

12.5.4 Short Floating-Point Loads and Stores
UltraSPARC T1 does not supports 8-/16-bit loads and stores to the floating-point
registers.

Compatibility
Note

With an implicit ASI for instruction fetching of ASI_NUCLEUS, if
software was to set the strand in a state where PSTATE.priv = 0
but TL > 0, an instruction fetch will generate an
instruction_access_exception, because user-level code is
accessing ASI_NUCLEUS. UltraSPARC I/II overrides this
instruction_access_exception and allows instruction fetching
when PSTATE.priv = 0 and TL > 0. UltraSPARC T1 is compatible
with UltraSPARC I/II and does the same override of
instruction_access_exception when PSTATE.priv = 0 and TL > 0.
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12.5.5 Interrupt Vector Handling
CPUs and I/O devices can interrupt a selected CPU by assembling and sending an
interrupt packet. This allows hardware interrupts and cross calls to have the same
hardware mechanism and to share a common software interface for processing.
Interrupt vectors are described in Chapter 7, Interrupt Handling.

12.5.6 Power-Down Support
UltraSPARC T1 supports the ability to power down virtual processors and I/O
devices to reduce power requirements during idle periods.

12.5.7 UltraSPARC T1 Instruction Set Extensions (Impl.
Dep. #106)
The UltraSPARC T1 CPU supports a subset of the VIS 1.0 and 2.0 instructions; see
UltraSPARC Architecture 2005 Instructions Not Directly Implemented by UltraSPARC T1
Hardware on page 13.

Unimplemented IMPDEP1 and IMPDEP2 opcodes encountered during execution
cause an illegal_instruction trap.

12.5.8 Performance Instrumentation
UltraSPARC T1 performance instrumentation is described in Performance Control
Register on page 49 and SPARC Performance Instrumentation Counter on page 51.
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APPENDIX A

Assembly Language Syntax

The assembly language syntax used in this document follows that described in the
"Assembly Language Syntax" appendix of the UltraSPARC Architecture 2005
specification.
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APPENDIX B

Programming Guidelines

B.1 Multithreading
In UltraSPARC T1, execution is switched in round-robin fashion every cycle among
the strands that are ready to issue another instruction. Context switching is built into
the UltraSPARC T1 pipeline and takes place during the SWITCH stage, thus contexts
are switched each cycle with no pipeline stall penalty.

The following instructions change a strand from a ready-to-issue state to a not-
ready-to-issue state, until hardware determines that their input/execution
requirements can be satisfied:

■ All branches (including CALL, JMPL, etc.)
■ All VIS instructions
■ All floating point (FPops)
■ All WRPR, WR
■ All RDPR, RD
■ SAVE(D), RESTORE(D), RETURN, FLUSHW (all register management)
■ All MUL and DIV
■ MULSCC
■ MEMBAR #Sync, MEMBAR #StoreLoad, MEMBAR #MemIssue
■ FLUSH
■ All loads
■ All floating-point memory operations
■ All memory operations to alternate space
■ All atomics load-store operations
■ Prefetch
75



B.2 Pipeline Strand Flush
The front end of the UltraSPARC T1 pipeline prevents instructions from being issued
to the rest of the pipeline unless there is a high probability (for most instructions, a
probability of 1.0) of the instruction having all its input dependencies satisfied. For
certain instructions, the input dependencies cannot be determined by the front end,
and the instruction (and any subsequent instructions issued from that strand) need
to be flushed from the pipeline and replayed. TABLE B-1 lists instructions that may
end up causing a strand flush.

B.3 Instruction Latencies
TABLE B-2 lists the single-strand instruction latencies for UltraSPARC T1. When
multiple strands are executing, much of the additional latency for multicycle
instructions will be overlapped with execution of the additional strands.

In this table, certain opcodes are marked with mnemonic superscripts. These
superscripts and their meanings are defined in TABLE 5-1 on page 13.

TABLE B-1 Pipeline Strand Flush Events

Event Strand Flush Description

Loads The strand will be flushed if the load encounters a cache miss while executing with
STRAND_STS_REG.spec_en = 1.

multiply/divide/
floating-point operate

Resource contention can cause a strand flush.

store buffer full The strand will be flushed until space is available in the store buffer.

trap Instruction and any subsequent instructions in the pipeline from that strand are
flushed, and fetching restarts at the trap vector.

TABLE B-2 Instruction Latencies (1 of 14)

Instruction Latency Comments

ADD 1

ADDc 1

ADDCC 1

ADDNcc 1
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AND 1

ANDcc 1

ANDN 1

ANDNcc 1

BA 3?

BA_A 4

BA_A_PN 4?

BA_PN 3

BA_XCC 3

BA_XCC_A 4?

BA_XCC_A_PN 4

BA_XCC_PN 3?

BCC 3

BCC_A 3

BCC_A_PN 4

BCC_PN 3

BCC_XCC 3

BCC_XCC_A 3

BCC_XCC_A_PN 4

BCC_XCC_PN 3?

BCS 3

BCS_A 4

BCS_A_PN 4?

BCS_PN 3

BCS_XCC 3

BCS_XCC_A 4

BCS_XCC_A_PN 4

BCS_XCC_PN 4?

BE 3

BE_A 4?

TABLE B-2 Instruction Latencies (2 of 14)

Instruction Latency Comments
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BE_A_PN 4

BE_PN 3

BE_XCC 3

BE_XCC_A 4

BE_XCC_A_PN 4

BE_XCC_PN 3

BG 3

BG_A 3

BG_A_PN 4

BG_PN 3

BG_XCC 3

BG_XCC_A 3

BG_XCC_A_PN 3?

BG_XCC_PN 3

BGE 3

BGE_A 3

BGE_A_PN 4?

BGE_PN 3

BGE_XCC 3

BGE_XCC_A 4

BGE_XCC_A_PN 4?

BGE_XCC_PN 3

BGU 3

BGU_A 3

BGU_A_PN 3?

BGU_PN 3

BGU_XCC 3

BGU_XCC_A 4

BGU_XCC_A_PN 4

BGU_XCC_PN 3

TABLE B-2 Instruction Latencies (3 of 14)

Instruction Latency Comments
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BL 3

BL_A 3

BL_A_PN 3?

BL_PN 3

BL_XCC 3

BL_XCC_A 4?

BL_XCC_A_PN 4

BL_XCC_PN 3

BLE 3

BLE_A 3

BLE_A_PN 3?

BLE_PN 3

BLE_XCC 3

BLE_XCC_A 4

BLE_XCC_A_PN 4?

B LE_XCC_PN 3

BLEU 3

BLEU_A 4?

BLEU_A_PN 4

BLEU_PN 3?

BLEU_XCC 3

BLEU_XCC_A 4

BLEU_XCC_A_PN 4

BLEU_XCC_PN 3

BN 3

BN_A 4

BN_A_PN 4

BN_PN 3

BN_XCC 3

BN_XCC_A 4?

TABLE B-2 Instruction Latencies (4 of 14)

Instruction Latency Comments
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BN_XCC_A_PN 4

BN_XCC_PN 3

BNE 3

BNE_A 3

BNE_A_PN 3?

BNE_PN 3

BNE_XCC 3?

BNE_XCC_A 4

BNE_XCC_A_PN 4

BNE_XCC_PN 3?

BNEG 3

BNEG_A 4

BNEG_A_PN 4

BNEG_PN 3

BNEG_XCC 3

BNEG_XCC_A 4

BNEG_XCC_A_PN 4

BNEG_XCC_PN 3

BPOS 3

BPOS_A 4?

BPOS_A_PN 4

BPOS_PN 3

BPOS_XCC 3

BPOS_XCC_A 4?

BPOS_XCC_A_PN 4

BPOS_XCC_PN 3

BRGEZ 3

BRGEZ_A 4?

BRGEZ_A_PN 4

BRGEZ_PN 3

TABLE B-2 Instruction Latencies (5 of 14)

Instruction Latency Comments
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BRGZ 3

BRGZ_A 4?

BRGZ_A_PN 4

BRGZ_PN 3

BRLEZ 3

BRLEZ_A 4

BRLEZ_A_PN 4

BRLEZ_PN 3

BRLZ 3

BRLZ_A 3

BRLZ_A_PN 3?

BRLZ_PN 3

BRNZ 3

BRNZ_A 4

BRNZ_A_PN 4

BRNZ_PN 3

BRZ 3

BRZ_A 4

BRZ_A_PN 4

BRZ_PN 3

BVC 3

BVC_A 4?

BVC_A_PN 4

BVC_PN 3

BVC_XCC 3

BVC_XCC_A 4

BVC_XCC_A_PN 4?

BVC_XCC_PN 3

BVS 3

BVS_A 4

TABLE B-2 Instruction Latencies (6 of 14)

Instruction Latency Comments
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BVS_A_PN 4

BVS_PN 3

BVS_XCC 3

BVS_XCC_A 4

BVS_XCC_A_PN 4

BVS_XCC_PN 3

CASAPASI 39 performed in L2

CASXAPASI 39 performed in L2

FABSd 8

FABSs 21

FADDd 26

FADDs 26

FBA 3

FBA_A 4?

FBA_A_PN 4

FBA_PN 3

FBE 3

FBE_A 4

FBE_A_PN 4

FBE_PN 3

FBG 3

FBG_A 4

FBG_A_PN 4?

FBG_PN 3

FBGE 3

FBGE_A 4

FBGE_A_PN 4

FBGE_PN 3

FBL 3

FBL_A 4?

TABLE B-2 Instruction Latencies (7 of 14)

Instruction Latency Comments
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FBL_A_PN 4

FBL_PN 3

FBLE 3

FBLE_A 4

FBLE_A_PN 4

FBLE_PN 3

FBLG 3

FBLG_A 4

FBLG_A_PN 4

FBLG_PN 3

FBN 3?

FBN_A 4

FBN_A_PN 4

FBN_PN 3

FBNE 3

FBNE_A 4

FBNE_A_PN 4?

FBNE_PN 3

FBUE 3

FBUE_A 4

FBUE_A_PN 4

FBUE_PN 3

FBUG 3

FBUG_A 4

FBUG_A_PN 4

FBUG_PN 3

FBUGE 3

FBUGE_A 4

FBUGE_A_PN 4

FBUGE_PN 3

TABLE B-2 Instruction Latencies (8 of 14)

Instruction Latency Comments
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FBUL 3

FBUL_A 4

FBUL_A_PN 4

FBUL_PN 3

FBULE 3

FBULE_A 4

FBULE_A_PN 4

FBULE_PN 3

FDIVd 83

FDIVs 54

FdTOi 25

FdTOs 25

FdTOx 25

FiTOd 25

FiTOs 26

FMOVd 8

FMOVDA

FMOVDE 8

FMOVDG 8

FMOVDGE 8

FMOVDL 8

FMOVDLE 8

FMOVDLG 8

FMOVDN 8

FMOVDNE 8

FMOVDO 8

FMOVDU 8

FMOVDUE 8

FMOVDUG 8

FMOVDUGE 8

TABLE B-2 Instruction Latencies (9 of 14)

Instruction Latency Comments
84 UltraSPARC T1 Supplement • Draft D2.0, 17 Mar 2006



FMOVDUL 8

FMOVDULE 8

FMOVs 8

FMOVSA 8

FMOVSE 8?

FMOVSG 8?

FMOVSGE 8?

FMOVSL 8?

FMOVSLE 8?

FMOVSLG 8?

FMOVSN 8

FMOVSNE 8

FMOVSO 8?

FMOVSU 8

FMOVSUE 8

FMOVSUG 8

FMOVSUGE 8

FMOVSUL 8

FMOVSULE 8

FMULd 29

FMULs 29

FNEGd 8

FNEGs 8

FsMULd 29

FsTOd 25

FsTOi 25

FsTOx 25

FSUBd 26

FSUBs 26

FxTOd 26

TABLE B-2 Instruction Latencies (10 of 14)

Instruction Latency Comments
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FxTOs 26

LD_FP 9

LDFSR 9

LDD_FP 9?

LDD_FPD 9

LDDFAPASI 9

LDSB 22 performed in L2

LDSBA 21 performed in L2

LDSH 3

LDSHAPASI 3

LDSTUB 37 performed in L2

LDSTUBAPASI 37 performed in L2

LDSW 3

LDSWA 3

LDUB 3

LDUBA 3

LDUH 3

LDUHAPASI 3

LDUW 3

LDUWAPASI 3

LDX 3

LDX_FSR 27

LDXAPASI 3

MOVA 1

MOVA_FCC 1

MOVCC 1

MOVCS 1

MOVE 1

MOVE_FCC 1

MOVG 1?

TABLE B-2 Instruction Latencies (11 of 14)

Instruction Latency Comments
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MOVG_FCC 1

MOVGE 1

MOVGE_FCC 1

MOVGU 1?

MOVL 1

MOVL_FCC 1

MOVLE 1

MOVLE_FCC 1

MOVLEU 1

MOVLG_FCC 1

MOVN 1

MOVN_FCC 1

MOVNE 1

MOVNE_FCC 1

MOVNEG 1?

MOVO_FCC 1

MOVPOS 1

MOVRE 1

MOVRGEZ 1

MOVRGZ 1

MOVRLEZ 1

MOVRLZ 1

MOVRNE 1

MOVU_FCC 1

MOVUE_FCC 1

MOVUG_FCC 1

MOVUGE_FCC 1

MOVUL_FCC 1

MOVULE_FCC 1

MOVVC 1

TABLE B-2 Instruction Latencies (12 of 14)

Instruction Latency Comments
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MOVVS 1

MULSCC 7

MULX 11

OR 1

ORcc 1

ORN 1

ORNcc 1

RD_CCR 4

RDASI 4

RD_FPRS 4

RD_Y 4

SDIVD 72

SDIVccD 72

SDIVX 72

SETHI 1

SLL 1

SLLX 1

SMULD 11

SMULccD 11

SRA 1?

SRAX 1

SRL 1

SRLX 1

STFAPASI 8

ST_FSR 8

STFAPASI 8

STB 1

STBA 4

STDF 8

STDA_FP 8?

TABLE B-2 Instruction Latencies (13 of 14)

Instruction Latency Comments
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STDA_FP_ASI 8

STH 1

STHA 4

STW 1?

STWA 1?

STX 1

STX_FSR 8

STXA 1-? (4-?)? varies, depending on ASI

SUB 1

SUBC 1

SUBcc 1

SUBCcc 1

SWAPD 49 performed in L2

SWAPAD, PASI 37 performed in L2

TADDcc 1?

TADDccTVD 1

TSUBcc 1

TSUBccTVD 1

UDIVD 72

UDIVccD 72?

UDIVX 72

UMULD 11

UMULccD 11

WR_CCR 9

WRASI 9

WR_FPRS 9

XNOR 1

XNORcc 1

XOR 1

XORcc 1

TABLE B-2 Instruction Latencies (14 of 14)

Instruction Latency Comments
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B.4 Grouping Rules
Each physical cores in UltraSPARC T1 are single-issue, so there are no grouping
rules for UltraSPARC T1.

B.5 Floating-Point Operations
UltraSPARC T1 supports hardware floating-point operations, but since one floating-
point unit (FPU) is shared among 8 physical cores (32 strands), there are limitations
on dispatch of floating-point instructions to the FPU. Each physical processor core
(four strands) can have a single floating-point instruction outstanding at any given
time. For the purpose of this restriction, floating-point instructions include floating-
point operations, VIS floating-point operations, floating-point loads and stores, and
block loads and stores.

B.6 Synchronization
UltraSPARC T1 has two varieties of instructions for synchronization: memory
barriers and flush. The following memory barrier instructions ensure that any load,
store, or atomic memory operation issued after it take effect after all memory
operations issued before it:

■ MEMBAR with mmask{1} = 1 (MEMBAR #StoreLoad)

■ MEMBAR with cmask{1} = 1 (MEMBAR #MemIssue)

■ MEMBAR with cmask{2} = 1 MEMBAR #Sync)

All other types of membar instructions are treated as NOPs, since they are implied
by the TSO memory ordering protocol followed by UltraSPARC T1.

However, the memory barriers do not guarantee that the instruction caches on
UltraSPARC T1 have become consistent with the preceding memory operations. A
FLUSH instruction guarantees that in addition to the preceding memory operations
taking effect in the global memory system, all the instruction caches on UltraSPARC
T1 are consistent with these operations. It also ensures that the instruction fetch
buffer for the strand issuing the flush has become consistent with the preceding
memory operations.
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Thus, when one strand is modifying the instructions of another, the “producer”
strand should

1. Complete all necessary modifications

2. Issue a FLUSH

3. Signal completion to the “consumer” strand

Completion may be signalled by a store/atomic instruction which modifies a
predetermined location, or by issuing an interrupt to the consumer strand.

The consumer strand at this point should make sure that its instruction fetch buffer
(of size 2 entries) becomes consistent with the global memory system. This can be
done by either

1. Issuing a branch to the modified location; or

2. Issuing a flush instruction; or

3. Waiting for a two-instruction gap, to allow the two instructions in the fetch buffer
to drain.

In the case of a branch, the delay slot is not guaranteed to be consistent with global
memory. The branch is a better option than flush for high performance.

Note that the HALT instruction is not meant to be a synchronization instruction and
should not be used as such. For example, the following code, which uses halt to
make sure func_A executes before func_B, may cause T0 to hang:

T0

st X

halt

do_func_B

T1

ld X

do_func_A

intr T0
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APPENDIX C

Opcode Maps

This appendix contains the UltraSPARC T1 instruction opcode maps.

Opcodes marked with a dash (—) are reserved; an attempt to execute a reserved
opcode causes a trap unless the opcode is an implementation-specific extension to
the instruction set.

In this appendix, certain opcodes are marked with mnemonic superscripts. These
superscripts and their meanings are defined in TABLE 5-1 on page 13.

In the tables in this appendix, reserved (—) and shaded entries indicate opcodes that
are not implemented in the UltraSPARC T1 processor.

†rd = 0, imm22 = 0

The ILLTRAP and reserved (—) encodings generate an illegal_instruction trap.

Shading Meaning

An attempt to execute opcode will cause an illegal_instruction exception.
An attempt to execute opcode will cause an fp_exception_other exception with
FSR.ftt = 3 (unimplemented_FPop).

TABLE C-1 op{1:0}

op {1:0}

0 1 2 3

Branches and SETHI
See TABLE C-2.

CALL Arithmetic and Miscellaneous
See TABLE C-3

Loads/Stores
See TABLE C-4

TABLE C-2 op2{2:0} (op = 0)

op2 {2:0}

0 1 2 3 4 5 6 7

ILLTRAP BPcc – See
TABLE C-7

BiccD– See
TABLE C-7

BPr – See
TABLE C-8

SETHI
NOP†

FBPfcc – See
TABLE C-7

FBfccD– See
TABLE C-7

—
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TABLE C-3 op3{5:0} (op = 2) (1 of 3)

op3 {5:4}

0 1 2 3

op3
{3:0}

0 ADD ADDcc TADDcc WRYD (rd = 0)
— (rd= 1)
WRCCR (rd = 2)
WRASI (rd = 3)
— (rd = 4, 5)
— (rd = 5, rd = 0, rd = 1)
WRFPRS (rd = 6)
— (rd = 7–14)
— (rd = 15 and (rs1 > 0 or i = 0))
WRPCRP (rd = 16, rd = 0)
— (rd =16, rd = 1)
WRPIC (rd = 17, rd = 0)
— (rd = 17, rd = 1)
— (rd = 18)
WRGSR (rd = 19)
WRSOFTINT_SETP (rd = 0)
WRSOFTINT_CLRP (rd = 21)
WRSOFTINTP (rd = 22)
WRTICK_CMPRP (rd = 23)
WRSTICK_CMPR (rd = 25)
WR %asr26 (rd = 26, rd = 1)
— (rd = 26, rd = 0)
— (rd=27–31))

1 AND ANDcc TSUBcc SAVEDP (fcn = 0),
RESTOREDP (fcn = 1)
— (fcn > 1)

2 OR ORcc TADDccTVD WRPRP

— (rd = 15, 17–31)

3 XOR XORcc TSUBccTVD — (rs1 = 2, 4, 7–30)

4 SUB SUBcc MULSccD FPop1 – See TABLE C-5

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1) FPop2 – See TABLE C-6

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1 (VIS) – See TABLE C-12

7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2
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op3
{3:0}

8 ADDC ADDCcc RDYD (rs1 = 0, i = 0))
— (rs1 = 0, i = 1)
— (rs1= 1)
RDCCR (rs1= 2, i = 0))
— (rs1 = 2, i = 1)
RDASI (rs1= 3, i = 0)
— (rs1 = 3, i = 1)
RDTICKPnpt (rs1 = 4, i = 0)
— (rs1 = 4, i = 1)
RDPC (rs1 = 5, i = 0)
— (rs1 = 5, i = 1)
RDFPRS (rs1 = 6, i = 0)
— (rs1 = 6, i = 1)
— (rs1 = 7–14)
MEMBAR (rs1 = 15, rd=0, i = 1)
STBARD (rs1 = 15, rd=0, i = 0)
— (rs1 = 15, rd > 0)
RDPCRP (rs1= 16)
RDPIC (rs1= 17)
— (rs1 = 18)
RDGSR (rs1= 19, i = 0)
— (rs1 = 19, i = 1)
— (rs1=20, 21)
RDSOFTINTP (rs1= 22, i = 0)
— (rs1 = 22, i = 1)
RDTICK_CMPRP (rs1= 23, i = 0)
— (rs1 = 23, i = 1)
RDSTICKP (rs1= 24, i = 0)
— (rs1 = 24, i = 1)
RDSTICK_CMPRP (rs1= 25, i = 0)
— (rs1 = 25, i = 1)
rd %asr26 (rs1= 26)
— (rs1= 27 - 31)

JMPL

TABLE C-3 op3{5:0} (op = 2) (2 of 3)

op3 {5:4}

0 1 2 3
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Shaded and the reserved (—) opcodes cause an illegal_instruction trap.

op3
{3:0}

9 MULX — — (rs1 = 2, 4, 7 - 30) RETURN

A UMULD UMULccD RDPRP

— (rs1 = 15, 17 - 30)
Tcc {(i = 0 and inst{10:5} = 0) or
i = 1 and inst{10:8} = 0)}–See
TABLE C-7 and TABLE C-11.
— {((i = 0 and inst{10:5} > 0) or
i = 1 and inst{10:8} > 0)}

B SMULD SMULccD FLUSHW FLUSH

C SUBC SUBCcc MOVcc See TABLE C-9 SAVE

D UDIVX — SDIVX RESTORE

E UDIVD UDIVccD POPC (rs1 = 0)
— (rs1 > 0)

DONEP (fcn = 0)
RETRYP (fcn = 1)
— (fcn > 1)

F SDIVD SDIVccD MOVr See TABLE C-8 —

TABLE C-3 op3{5:0} (op = 2) (3 of 3)

op3 {5:4}

0 1 2 3
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LDQF, LDQFA, STQF, STQFA, and the reserved (—) opcodes cause an
illegal_instruction trap.

TABLE C-4 op3{5:0} (op = 3)

op3{5:4}

0 1 2 3

op3
{3:0}

0 LDUW LDUWAPASI LDF LDFAPASI

1 LDUB LDUBAPASI LDFSRD, LDXFSR
— (rd > 1)

—

2 LDUH LDUHAPASI LDQF LDQFAPASI

3 LDDD

— (rd odd)
LDDAD, PASI

— (rd odd)
LDDF LDDFAPASI

See 8.6.4 XREF

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR
— (rd > 1)

—

6 STH STHAPASI STQF STQFAPASI

7 STDD

— (rd odd)
STDAPASI

— (rd odd)
STDF STDFAPASI

See 8.6.4 XREF

8 LDSW LDSWAPASI — —

9 LDSB LDSBAPASI — —

A LDSH LDSHAPASI — —

B LDX LDXAPASI — —

C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH
— (fcn = 5–15)

PREFETCHAPASI

— (fcn = 5–15)

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —
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Shaded and reserved (—) opcodes cause an fp_exception_other trap with FSR.ftt = 3
(unimplemented_FPop).

TABLE C-5 opf{8:0} (op = 2,op3 = 3416 = FPop1)

opf{2:0}

opf{8:3} 0 1 2 3 4 5 6 7

0016 — FMOVs FMOVd FMOVq — FNEGs FNEGd FNEGq

0116 — FABSs FABSd FABSq — — — —

0216 — — — — — — — —

0316 — — — — — — — —

0416 — — — — — — — —

0516 — FSQRTs FSQRTd FSQRTq — — — —

0616 — — — — — — — —

0716 — — — — — — — —

0816 — FADDs FADDd FADDq — FSUBs FSUBd FSUBq

0916 — FMULs FMULd FMULq — FDIVs FDIVd FDIVq

0A16 — — — — — — — —

0B16 — — — — — — — —

0C16 — — — — — — — —

0D16 — FsMULd — — — — FdMULq —

0E16 — — — — — — — —

0F16 — — — — — — — —

1016 — FsTOx FdTOx FqTOx FxTOs — — —

1116 FxTOd — — — FxTOq — — —

1216 — — — — — — — —

1316 — — — — — — — —

1416 — — — — — — — —

1516 — — — — — — — —

1616 — — — — — — — —

1716 — — — — — — — —

1816 — — — — FiTOs — FdTOs FqTOs

1916 FiTOd FsTOd — FqTOd FiTOq FsTOq FdTOq —

1A16 — FsTOi FdTOi FqTOi — — — —

1B16–3F16 — — — — — — — —
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† Reserved variation of FMOVr

Shaded and reserved (—) opcodes cause an fp_exception_other trap with FSR.ftt = 3
(unimplemented_FPop).

TABLE C-6 opf{8:0} (op = 2, op3 = 3516 = FPop2)

opf{3:0}

opf{8:4} 0 1 2 3 4 5 6 7 8–F

00 — FMOVs (fcc0) FMOVd (fcc0) FMOVq (fcc0) — † † † —

01 — — — — — — — — —

02 — — — — — FMOVsZ FMOVdZ FMOVqZ —

03 — — — — — — — — —

04 — FMOVs (fcc1) FMOVd (fcc1) FMOVq (fcc1) — FMOVsLEZ FMOVdLEZ FMOVqLEZ —

05 — FCMPs FCMPd FCMPq — FCMPEs FCMPEd FCMPEq —

06 — — — — — FMOVsLZ FMOVdLZ FMOVqLZ —

07 — — — — — — — — —

08 — FMOVs (fcc2) FMOVd (fcc2) FMOVq (fcc2) — † † † —

09 — — — — — — — — —

0A — — — — — FMOVsNZ FMOVdNZ FMOVqNZ —

0B — — — — — — — — —

0C — FMOVs (fcc3) FMOVd (fcc3) FMOVq (fcc3) — FMOVsGZ FMOVdGZ FMOVqGZ —

0D — — — — — — — — —

0E — — — — — FMOVsGEZ FMOVdGEZ FMOVqGEZ —

0F — — — — — — — — —

10 — FMOVs (icc) FMOVd (icc) FMOVq (icc) — — — — —

11–17 — — — — — — — — —

18 — FMOVs (xcc) FMOVd (xcc) FMOVq (xcc) — — — — —

19–1F — — — — — — — — —
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TABLE C-7 cond{3:0}

BPcc BiccD FBPfcc FBfccD Tcc

op = 0
op2 = 1

op = 0
op2 = 2

op = 0
op2 = 5

op = 0
op2 = 6

op = 2
op3 = 3a16

cond
{3:0}

0 BPN BND FBPN FBND TN

1 BPE BED FBPNE FBNED TE

2 BPLE BLED FBPLG FBLGD TLE

3 BPL BLD FBPUL FBULD TL

4 BPLEU BLEUD FBPL FBLD TLEU

5 BPCS BCSD FBPUG FBUGD TCS

6 BPNEG BNEGD FBPG FBGD TNEG

7 BPVS BVSD FBPU FBUD TVS

8 BPA BAD FBPA FBAD TA

9 BPNE BNED FBPE FBED TNE

A BPG BGD FBPUE FBUED TG

B BPGE BGED FBPGE FBGED TGE

C BPGU BGUD FBPUGE FBUGED TGU

D BPCC BCCD FBPLE FBLED TCC

E BPPOS BPOSD FBPULE FBULED TPOS

F BPVC BVCD FBPO FBOD TVC

TABLE C-8 Encoding of rcond{2:0} Instruction Field

BPr MOVr FMOVr

op = 0
op2 = 3

op = 2
op3 = 2f16

op = 2
op3 = 3516

rcond
{2:0}

0 — — —

1 BRZ MOVRZ FMOVRZ

2 BRLEZ MOVRLEZ FMOVRLEZ

3 BRLZ MOVRLZ FMOVRLZ

4 — — —

5 BRNZ MOVRNZ FMOVRNZ

6 BRGZ MOVRGZ FMOVRGZ

7 BRGEZ MOVRGEZ FMOVRGEZ
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TABLE C-9 cc / opf_cc Fields (MOVcc and FMOVcc)

opf_cc

Condition Code Selectedcc2 cc1 cc0

0 0 0 fcc0

0 0 1 fcc1

0 1 0 fcc2

0 1 1 fcc3

1 0 0 icc

1 0 1 —

1 1 0 xcc

1 1 1 —

TABLE C-10 cc Fields (FBPfcc, FCMP, and FCMPE)

cc1 cc0 Condition Code Selected

0 0 fcc0

0 1 fcc1

1 0 fcc2

1 1 fcc3

TABLE C-11 cc Fields (BPcc and Tcc)

cc1 cc0 Condition Code Selected

0 0 icc

0 1 —

1 0 xcc

1 1 —
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TABLE C-12 VIS Opcodes op = 2, op3 = 3616 = IMPDEP1

opf {3:0}

0 1 2 3 4 5 6 7

opf
{8:4}

00 EDGE8 EDGE8N EDGE8L EDGE8LN EDGE16 EDGE16N EDGE16L EDGE16LN

01 ARRAY8 ARRAY16 ARRAY32

02 FCMPLE16 FCMPNE16 FCMPLE32 FCMPNE32

03 FMUL8X16 FMUL8X16AU FMUL8X16AL FMUL8SUX16 FMUL8ULX16

04

05 FPADD16 FPADD16S FPADD32 FPADD32S FPSUB16 FPSUB16S FPSUB32 FPSUB32S

06 FZERO FZEROS FNOR FNORS FANDNOT2 FANDNOT2S FNOT2 FNOT2S

07 FAND FANDS FXNOR FXNORS FSRC1 FSRC1S FORNOT2 FORNOT2S

08 SHUTDOWN SIAM

09..
1F

opf {3:0}

8 9 A B C D E F

opf
{8:4}

00 EDGE32 EDGE32N EDGE32L EDGE32LN

01
ALIGN
ADDRESS

BMASK ALIGNADDR
ESS_LITTLE

02 FCMPGT16 FCMPEQ16 FCMPGT32 FCMPEQ32

03
FMULD8SUX16 FMULD8ULX1

6
FPACK32 FPACK16 FPACKFIX PDIST

04 FALIGNDATA FPMERGE BSHUFFLE FEXPAND

05

06 FANDNOT1 FANDNOT1S FNOT1 FNOT1S FXOR FXORS FNAND FNANDS

07 FSRC2 FSRC2S FORNOT1 FORNOT1S FOR FORS FONE FONES

08

09..
1F

Note An illegal_instruction exception is generated if the undefined or
shaded opcodes in the IMPDEP1 space are used.
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APPENDIX D

Instructions and Exceptions

The instructions supported by UltraSPARC T1 and the exceptions they generate are
listed in the UltraSPARC Architecture 2005 specification.
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APPENDIX E

IEEE 754 Floating Point Support

UltraSPARC T1 conforms to the SPARC V9 Appendix B (IEEE Std 754-1985
Requirements for SPARC-V9) recommendations.

E.1 Special Operand Handling
The UltraSPARC T1 FPU provides full hardware support for subnormal operands
and results. Unlike UltraSPARC I/II and UltraSPARC III, UltraSPARC T1 will never
generate an unfinished_FPop trap type. Also, unlike UltraSPARC I/II and
UltraSPARC III, UltraSPARC T1 does not implement a nonstandard floating-point
mode. The ns bit of the FSR is always read as 0, and writes to it are ignored.

The FPU generates +inf, −inf, +largest number, −largest number (depending on
round mode) for overflow cases for multiply, divide, and add operations.

For higher-to-lower precision conversion instructions {FDTOS}:

■ overflow, underflow, and inexact exceptions can be raised.

■ overflow is treated the same way as an unrounded add result; depending on
the round mode, we will either generate the properly signed infinity or largest
number.

■ underflow will produce a signed zero, smallest number, or subnormal result.

For conversion to integer instructions {F(s,d)TOi, F(s,d)TOx}: UltraSPARC T1 follows
SPARC V9 appendix B.5, pg 246.

For NaN’s: UltraSPARC T1 Follows SPARC V9 appendix B.2 (particularly Table 27)
and B.5, pg 244-246.

■ Please note that Appendix B applies to those instructions listed in IEEE 754
section 5: “All conforming implementations of this standard shall provide
operations to add, subtract, multiply, divide, extract the sqrt, find the remainder,
round to integer in fp format, convert between different fp formats, convert

Note UltraSPARC T1 detects tininess before rounding.
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between fp and integer formats, convert binary<->decimal, and compare.
Whether copying without change of format is considered an operation is an
implementation option.”

■ The instructions involving copying/moving of fp data (FMOV, FABS, and FNEG)
will follow earlier UltraSPARC implementations by doing the appropriate sign bit
transformation but will not cause an invalid exception nor do a rs2 = SNaN to
rd = QNaN transformation.

■ Following UltraSPARC I/II implementations, all Fpops as defined in V9 will
update cexc. All other instructions will leave cexc unchanged.

■ Following SPARC V9 Manual 5.1.7.6, 5.1.7.8, 5.1.7.9, and figures in 5.1.7.10
Overflow Result is defined as:

If the appropriate trap enable masks are not set (FSR.ofm = 0 and
FSR.nxm = 0), then set aexc and cexc overflow and inexact flags:
FSR.ofa = 1, FSR.nxa = 1, FSR.ofc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ofm = 1 or
FSR.nxm = 1), then only an IEEE overflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from UltraSPARC I/II to follow
the SPARC V9 section 5.1.7.9 errata:

If FSR.ofm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

If FSR.ofm = 1, independent of FSR.nxm, then FSR.ofc = 1 and
FSR.nxc = 0.

■ Following SPARC V9 Manual 5.1.7.6, 5.1.7.8, 5.1.7.9, and figures in 5.1.7.10
Underflow Result is defined as:

If the appropriate trap enable masks are not set (FSR.ufm = 0 and
FSR.nxm = 0), then set aexc and cexc underflow and inexact flags:
FSR.ufa = 1, FSR.nxa = 1, FSR.ufc = 1, FSR.nxc = 1. No trap is generated.

If any or both of the appropriate trap enable masks are set (FSR.ufm = 1 or
FSR.nxm = 1), then only an IEEE underflow trap is generated: FSR.ftt = 1.
The particular cexc bit that is set diverges from UltraSPARC I/II to follow
the SPARC V9 section 5.1.7.9 errata:

If FSR.ufm = 0 and FSR.nxm = 1, then FSR.nxc = 1.

If FSR.ufm = 1, independent of FSR.nxm, then FSR.ufc = 1 and
FSR.nxc = 0.

The remainder of this section gives examples of special cases to be aware of that
could generate various exceptions.

E.1.1 Infinity Arithmetic
Let “num” be defined as unsigned in the following tables.
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E.1.1.1 One Infinity Operand Arithmetic
■ Do not generate exceptions

TABLE E-1 One Infinity Operations That Do Not Generate Exceptions

Cases

+inf plus +num = +inf
+inf plus -num = +inf
-inf plus +num = -inf
-inf plus -num = -inf

+inf minus +num = +inf
+inf minus -num = +inf
-inf minus +num = -inf
-inf minus -num = -inf

+inf multiplied by +num = +inf
+inf multiplied by -num = -inf
-inf multiplied by +num = -inf
-inf multiplied by -num = +inf

+inf divided by +num = +inf
+inf divided by -num = -inf
-inf divided by +num = -inf
-inf divided by -num = +inf

+num divided by +inf = +0
+num divided by -inf = -0
-num divided by +inf = -0
-num divided by -inf = +0

fstod, fdtos (+inf) = +inf
fstod, fdtos (-inf) = -inF

+inf divided by +0 = +inf
+inf divided by -0 = -inf
-inf divided by +0 = -inf
-inf divided by -0 = +inf
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■ Could generate exceptions

Any arithmetic operation involving infinity as 1 operand and a QNaN as the other operand:
SPARC V9 B.2.2 Table 27
(+/- inf) OPERATOR (QNaN2) = QNaN2
(QNaN1) OPERATOR (+/- inf) = QNaN1

Compares when other operand is not a NaN treat infinity just like a regular number:
+inf = +inf, +inf > anything else;
-inf = -inf, -inf < anything else.

Affects following instructions:
V9 fp compares (rs1 and/or rs2 could be +/- inf):
* FCMPE
* FCMP

Compares when other operand is a QNaN, SPARC V9 A.13, B.2.1; fcc value = unordered =
2’b11
fcmp(s/d) (+/- inf) with (QNaN2) - no invalid exception
fcmp(s/d) (QNaN1) with (+/- inf) - no invalid exception

TABLE E-2 One Infinity Operations That Could Generate Exceptions

Cases Possible Exception
Result (in addition to accrued
exception) iF tem is cleared

SPARC V9 Appendix B.51

F{s,d}TOi (+inf) = invalid
F{s,d}TOx (+inf) = invalid

F{s,d}TOi (-inf) = invalid
F{s,d}TOx (-inf) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

231-1
263-1

-231

-263

SPARC V9 B.2.2

+inf multiplied by +0 = invalid
+inf multiplied by -0 = invalid
-inf multiplied by +0 = invalid
-inf multiplied by -0 = invalid

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)

QNaN
QNaN
QNaN
QNaN

TABLE E-1 One Infinity Operations That Do Not Generate Exceptions (Continued)

Cases
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1. Similar invalid exceptions also included in SPARC V9 B.5 are generated when the source operand is a NaN(QNaN or SNaN) or a re-
sulting number that cannot fit in 32b[64b] integer format: (large positive argument >= 231[263] or large negative argument <= -(231 +
1)[-(263+1)]

2. Note that in the IEEE 754 standard, infinity is an exact number; so this exception could also applies to non-infinity operands as well.
Also note that the invalid exception and SNaN to QNaN transformation does not apply to copying/moving fpops (fmov,fabs,fneg).

SPARC V9 B.2.2 Table 272

Any arithmetic operation involving infinity
as 1 operand and a SNaN as the other
operand except copying/moving data
(+/- inf) OPERATOR (SNaN2)
(SNaN1) OPERATOR (+/- inf)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

SPARC V9 A.13, B.2.12

Any compare operation involving infinity as
1 operand and a SNaN as the other operand:
FCMP(s/d) (+/- inf) with (SNaN2)
FCMP(s/d) (SNaN1) with (+/- inf)

FCMPE(s/d) (+/- inf) with (SNaN2)
FCMPE(s/d) (SNaN1) with (+/- inf)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 2’b11
fcc value = unordered = 2’b11

fcc value = unordered = 2’b11
fcc value = unordered = 2’b11

SPARC V9 A.132

Any compare & generate exception operation
involving infinity as 1 operand and a QNaN
as the other operand:

FCMPE(s/d) (+/- inf) with (QNaN2)
FCMPE(s/d) (QNaN1) with (+/- inf)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

fcc value = unordered = 2’b11
fcc value = unordered = 2’b11

TABLE E-2 One Infinity Operations That Could Generate Exceptions (Continued)

Cases Possible Exception
Result (in addition to accrued
exception) iF tem is cleared
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E.1.1.2 Two Infinity Operand Arithmetic
■ Do not generate exceptions

■ Could generate exceptions

TABLE E-3 Two Infinity Operations That Do Not Generate Exceptions

Cases

+inf plus +inf = +inf
-inf plus -inf = -inf

+inf minus -inf = +inf
-inf minus +inf = -inf

+inf multiplied by +inf = +inf
+inf multiplied by -inf = -inf
-inf multiplied by +inf = -inf
-inf multiplied by -inf = +inf

Compares treat infinity just like a regular number:
+inf = +inf, +inf > anything else;
-inf = -inf, -inf < anything else.

Affects following instructions:
V9 fp compares (rs1 and/or rs2 could be +/- inf):
* FCMPE
* FCMP

TABLE E-4 Two Infinity Operations That Generate Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

SPARC V9 B.2.2
+inf plus -inf = invalid
-inf plus +inf = invalid

+inf minus +inf = invalid
-inf minus -inf = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN

QNaN
QNaN

SPARC V9 B.2.2
+inf divided by +inf = invalid
+inf divided by -inf = invalid
-inf divided by +inf = invalid
-inf divided by -inf = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand result)
QNaN
QNaN
QNaN
QNaN
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E.1.2 Zero Arithmetic

1.In this context, 0 is again another exact number; so this exception could also applies to non-zero operands as well. Also note that the
invalid exception and SNaN to QNaN transformation does not apply to copying/moving data instructions (FMOV, FABS, FNEG)

TABLE E-5 Zero Arithmetic Operations That Generate Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

SPARC V9 B.2.2 & 5.1.7.10.4
+0 divided by +0 = invalid
+0 divided by -0 = invalid
-0 divided by +0 = invalid
-0 divided by -0 = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

(No NaN operand
result)
QNaN
QNaN
QNaN
QNaN

SPARC V9 5.1.7.10.4
+num divided by +0 = divide by zero
+num divided by -0 = divide by zero
-num divided by +0 = divide by zero
-num divided by -0 = divide by zero

IEEE_754 7.2
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero
IEEE_754 div_by_zero

+inf
-inf
-inf
+inf

SPARC V9 B.2.2 Table 271

Any arithmetic operation involving
zero as 1 operand and a SNaN as the
other operand except copying/moving
data
(+/- 0) OPERATOR (SNaN2)
(SNaN1) OPERATOR (+/- 0)

IEEE_754 7.1

IEEE_754 invalid
IEEE_754 invalid

(One operand, a SNaN)

QSNaN2
QSNaN1

TABLE E-6 Interesting Zero Arithmetic Sign Result Case

Cases

+0 plus -0 = +0 for all round modes except round to -infinity where the
result is -0.
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E.1.3 NaN Arithmetic
■ Do not generate exceptions

TABLE E-7 NaN Arithmetic Operations that do not generate exceptions

Cases

SPARC V9 B.2.1: Fp convert to wider NaN transformation
FsTOd (QNaN2) = QNaN2 widened

FsTOd(0x7fd10000) = 0x7ffa2000 8’h0
FsTOd(0xffd10000) = 0xfffa2000 8’h0

SPARC V9 B.2.1: Fp convert to narrower NaN transformation
FdTOs (QNaN2) = QNaN2 narrowed

FdTOs(0x7ffa2000 8’h0) = 0x7fd1000
FdTOs(0xfffa2000 8’h0) = 0xffd1000

SPARC V9 B.2.2 Table 27
Any non-compare arithmetic operations --result takes sign of QNaN pass through operand.

(+/- num) OPERATOR (QNaN2) = QNaN2

(QNaN1) OPERATOR (+/- num) = QNaN1

(QNaN1) OPERATOR (QNaN2) = QNaN2
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■ Could generate exceptions

E.1.4 Special Inexact Exceptions
UltraSPARC T1 Follows SPARC V9 5.1.7.10.5 (IEEE_754 Section 7.5) and sets
FSR_inexact whenever the rounded result of an operation differs from the infinitely
precise unrounded result.

TABLE E-8 NaN Arithmetic Operations That Could Generate Exceptions

Cases Possible Exception

Result (in addition
to accrued
exception)
if tem is cleared

SPARC V9 B.2.1: Fp convert to wider NaN transformation
FsTOd (SNaN2) = QSNaN2 widened

FsTOd(0x7f910000) = 0x7ffa2000 8’h0
FsTOd(0xff910000) = 0xfffa2000 8’h0

IEEE_754 7.1

IEEE_754 invalid QSNaN2
widened

SPARC V9 B.2.1: Fp convert to narrower NaN transformation
FdTos (SNaN2) = QSNaN2 narrowed

FdTos(0x7ff22000 8’h0) = 0x7fd1000
FdTos(0xfff22000 8’h0) = 0xffd1000

IEEE_754 7.1

IEEE_754 invalid QSNaN2
narrowed

SPARC V9 B.2.2 Table 27
Any non-compare arithmetic operations except copying/
moving (fmov, fabs, fneg)
(+/- num) OPERATOR (SNaN2)

(SNaN1) OPERATOR (+/- num)

(SNaN1) OPERATOR (SNaN2)

(QNaN1) OPERATOR (SNaN2)

(SNaN1) OPERATOR (QNaN2)

IEEE_754 7.1

IEEE_754 invalid

IEEE_754 invalid

IEEE_754 invalid

IEEE_754 invalid

IEEE_754 invalid

QSNaN2

QSNaN1

QSNaN2

QSNaN2

QSNaN1

SPARC V9 Appendix B.5
F{s,d}TOi (+QNaN) = invalid
F{s,d}TOi (+SNaN) = invalid
F{s,d}TOx (+QNaN) = invalid
F{s,d}TOx (+SNaN) = invalid

F{s,d}TOi (-QNaN) = invalid
F{s,d}TOi (-SNaN) = invalid
F{s,d}TOx (-QNaN) = invalid
F{s,d}TOx (-SNaN) = invalid

IEEE_754 7.1
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid
IEEE_754 invalid

231-1
231-1
263-1
263-1

-231

-231

-263

-263
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Additionally, there are a few special cases to be aware of:

E.2 Subnormal Handling
The UltraSPARC T1 FPU provides full hardware support for subnormal operands
and results. Unlike UltraSPARC I/II and UltraSPARC III, UltraSPARC T1 will never
generate an unfinished_FPop trap type.

TABLE E-9 Fp <-> Int Conversions With Inexact Exceptions

Cases Possible Exception

Result (in addition to
accrued exception)
if tem is cleared

SPARC V9 A.14: Fp convert to 32b integer when source operand
lies between -(231-1) and 231, but is not exactly an integer
FsTOi, FdTOi

IEEE_754 7.5

IEEE_754 inexact An integer number

SPARC V9 A.14: Fp convert to 64b integer when source operand
lies between -(263-1) and 263, but is not exactly an integer
FsTOx, FdTOx

IEEE_754 7.5

IEEE_754 inexact An integer number

SPARC V9 A.15: Convert integer to fp format when 32b integer
source operand magnitude is not exactly representable in single
precision (23b mantissa). Note, even if the operand is > 224-1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FiTOs

IEEE_754 7.5

IEEE_754 inexact A SP number

SPARC V9 A.15: Convert integer to fp format when 64b integer
source operand magnitude is not exactly representable in single
precision (23b mantissa). Note, even if the operand is > 224-1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FxTOs

IEEE_754 7.5

IEEE_754 inexact A SP number

SPARC V9 A.15: Convert integer to fp format when 64b integer
source operand magnitude is not exactly representable in double
precision (52b mantissa). Note, even if the operand is > 253-1, if
enough of its trailing bits are zeros, it may still be exactly
representable.
FxTOd

IEEE_754 7.5

IEEE_754 inexact A DP number
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APPENDIX F

Caches and Cache Coherency

This appendix describes various interactions between the caches and memory, and
the management processes that an operating system must perform to maintain data
integrity in these cases. In particular, it discusses the following subjects:

■ Invalidation of one or more cache entries – when and how to do it
■ Differences between cacheable and noncacheable accesses
■ Ordering and synchronization of memory accesses
■ Accesses to addresses that cause side effects (I/O accesses)
■ Nonfaulting loads
■ Cache sizes, associativity, replacement policy, etc.

F.1 Cache Flushing
Data in the level-1 (read-only or write-through) caches can be flushed by
invalidating the entry in the cache. Modified data in the level-2 (writeback) cache
must be written back to memory when flushed.

Cache flushing is required in the following cases:

Chapter Revision History
Date By Comment

28 Aug 03 Bill Bryg Started outline of appendix.

22 Sep 03 Bill Croxton Copied and reformatted Chapter 8, Cache and Memory Interactions,
from USIIi User Manual.

25 Nov 03 J. Laudon Initial changes for UltraSPARC T1

4 Jun 04 J. Laudon More information on unit of coherence.

2 Aug 04 J. Laudon Add cache index information.

20 Dec 04 J. Laudon Better documentation of how to flush L2.

11 Feb 05 M. L. Nohr Converted to UltraSPARC Architecture format
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■ I-cache: Flush is needed before executing code that is modified by a local store
instruction other than block commit store, see Section 3.1.1.1, “Instruction Cache
(I-cache).” This is done with the FLUSH instruction or by using ASI accesses.
When ASI accesses are used, software must ensure that the flush is done on the
same virtual core as the stores that modified the code space.

■ D-cache: Flush is needed when a physical page is changed from (virtually)
cacheable to (virtually) noncacheable. This is done with a displacement flush
(Displacement Flushing on page 116).

■ L2 cache: Flush is needed for stable storage. Examples of stable storage include
battery-backed memory and transaction logs. This is done with a displacement
flush (see Displacement Flushing on page 116). Flushing the L2 cache flushes the
corresponding blocks from the I- and D-caches because UltraSPARC T1 maintains
inclusion between the L2 and L1 caches.

F.1.1 Displacement Flushing
Cache flushing can be accomplished by a displacement flush. This is done by placing
the cache in direct-map mode, and reading a range of read-only addresses that map
to the corresponding cache line being flushed, forcing out modified entries in the
local cache. Care must be taken to ensure that the range of read-only addresses is
mapped in the MMU before starting a displacement flush; otherwise, the TLB miss
handler may put new data into the caches. In addition, the range of addresses used
to force lines out of the cache must not be present in the cache when starting the
displacement flush (if any of the displacing lines are present before starting the
displacement flush, fetching the already present line will not cause the proper way in
the direct-mapped mode L2 to be loaded, instead the already present line will stay at
its current location in the cache.)

F.1.2 Memory Accesses and Cacheability

Note Diagnostic ASI accesses to the L2 cache can be used to invalidate
a line, but they are generally not an alternative to displacement
flushing. Modified data in the L2 cache will not be written back
to memory using these ASI accesses.

Note Atomic load-store instructions are treated as both a load and a
store; they can be performed only in cacheable address spaces.
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F.1.3 Coherence Domains
Two types of memory operations are supported in UltraSPARC T1: cacheable and
noncacheable accesses, as indicated by the page translation. Cacheable accesses are
inside the coherence domain; noncacheable accesses are outside the coherence
domain.

SPARC V9 does not specify memory ordering between cacheable and noncacheable
accesses. In TSO mode, UltraSPARC T1 maintains TSO ordering, regardless of the
cacheability of the accesses. For SPARC V9 compatibility while in PSO or RMO
mode, a MEMBAR #Lookaside should be used between a store and a subsequent
load to the same noncacheable address. See the SPARC Architecture Manual, Version 9
for more information about the SPARC V9 memory models.

On UltraSPARC T1, a MEMBAR #Lookaside executes more efficiently than a
MEMBAR #StoreLoad.

F.1.3.1 Cacheable Accesses

Accesses that fall within the coherence domain are called cacheable accesses. They
are implemented in UltraSPARC T1 with the following properties:

■ Data resides in real memory locations.

■ They observe supported cache coherence protocol.

■ The unit of coherence is 64 bytes at the system level (coherence between the
virtual processors and I/O), enforced by the L2 cache.

■ The unit of coherence for the primary caches (coherence between multiple virtual
processors) is the primary cache line size (16 bytes for the data cache, 32 bytes for
the instruction cache), enforced by the L2 cache directories.

F.1.3.2 Noncacheable and Side-Effect Accesses

Accesses that are outside the coherence domain are called noncacheable accesses.
Accesses of some of these memory (or memory mapped) locations may result in side
effects. Noncacheable accesses are implemented in UltraSPARC T1 with the
following properties:

■ Data may or may not reside in real memory locations.

■ Accesses may result in program-visible side effects; for example, memory-
mapped I/O control registers in a UART may change state when read.

■ Accesses may not observe supported cache coherence protocol.

■ The smallest unit in each transaction is a single byte.
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Noncacheable accesses with the e bit set (that is, those having side-effects) are all
strongly ordered with respect to other noncacheable accesses with the e bit set.
Speculative loads with the e bit set cause a data_access_exception trap.

F.1.3.3 Global Visibility and Memory Ordering

To ensure the correct ordering between the cacheable and noncacheable domains,
explicit memory synchronization is needed in the form of MEMBARs or atomic
instructions. CODE EXAMPLE F-1 illustrates the issues involved in mixing cacheable
and noncacheable accesses.

Note The side-effect attribute does not imply noncacheability.

CODE EXAMPLE F-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.
Process A:
While (1)
{

Store D1:data produced
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:set flag
While F1 is set (spin on flag)
Load F1

2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D2
}

Process B:
While (1)
{

  While F1 is cleared (spin on flag)

      Load F1
2 MEMBAR #LoadLoad | #LoadStore (needed in RMO)

  Load D1

  Store D2
1 MEMBAR #StoreStore (needed in PSO, RMO)

Store F1:clear flag
}
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In TSO mode, loads and stores (except block stores) cannot pass earlier loads, and
stores cannot pass earlier stores; therefore, no MEMBAR is needed.

In PSO mode, loads are completed in program order, but stores are allowed to pass
earlier stores; therefore, only the MEMBAR at #1 is needed between updating data
and the flag.

In RMO mode, there is no implicit ordering between memory accesses; therefore, the
MEMBARs at both #1 and #2 are needed.

F.1.4 Memory Synchronization: MEMBAR and FLUSH
The MEMBAR (STBAR in SPARC V8) and FLUSH instructions are provide for
explicit control of memory ordering in program execution. MEMBAR has several
variations; their implementations in UltraSPARC T1 are described below.

■ MEMBAR #LoadLoad — Forces all loads after the MEMBAR to wait until all
loads before the MEMBAR have reached global visibility.

■ MEMBAR #StoreLoad — Forces all loads after the MEMBAR to wait until all
stores before the MEMBAR have reached global visibility.

■ MEMBAR #LoadStore — Forces all stores after the MEMBAR to wait until all
loads before the MEMBAR have reached global visibility.

■ MEMBAR #StoreStore and STBAR — Forces all stores after the MEMBAR to
wait until all stores before the MEMBAR have reached global visibility.

■ MEMBAR #Lookaside — SPARC V9 provides this variation for
implementations having virtually tagged store buffers that do not contain
information for snooping.

■ MEMBAR #MemIssue — Forces all outstanding memory accesses to be completed
before any memory access instruction after the MEMBAR is issued. It must be
used to guarantee ordering of cacheable accesses following noncacheable

Note A MEMBAR #MemIssue or MEMBAR #Sync is needed if
ordering of cacheable accesses following noncacheable accesses must
be maintained in PSO or RMO.

Notes (1) STBAR has the same semantics as MEMBAR #StoreStore; it
is included for SPARC V8 compatibility.

(2) The above four MEMBARs do not guarantee ordering between
cacheable accesses after noncacheable accesses.

Note For SPARC V9 compatibility, this variation should be used before
issuing a load to an address space that cannot be snooped.
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accesses. For example, I/O accesses must be followed by a MEMBAR #MemIssue
before subsequent cacheable stores; this ensures that the I/O accesses reach global
visibility before the cacheable stores after the MEMBAR.

MEMBAR #MemIssue is different from the combination of MEMBAR
#LoadLoad | #LoadStore | #StoreLoad | #StoreStore. MEMBAR
#MemIssue orders cacheable and noncacheable domains; it prevents memory
accesses after it from issuing until it completes.

■ MEMBAR #Sync (Issue Barrier) — Forces all outstanding instructions and all
deferred errors to be completed before any instructions after the MEMBAR are
issued.

See the references to “Memory Barrier,” “The MEMBAR Instruction,” and
“Programming With the Memory Models,” in The SPARC Architecture Manual,
Version 9 for more information.

F.1.4.1 Self-Modifying Code (FLUSH)

The SPARC V9 instruction set architecture does not guarantee consistency between
code and data spaces. A problem arises when code space is dynamically modified by
a program writing to memory locations containing instructions. LISP programs and
dynamic linking require this behavior. SPARC V9 provides the FLUSH instruction to
synchronize instruction and data memory after code space has been modified.

In UltraSPARC T1, a FLUSH behaves like a store instruction for the purpose of
memory ordering. In addition, all instruction fetch (or prefetch) buffers are
invalidated. The issue of the FLUSH instruction is delayed until previous (cacheable)
stores are completed. Instruction fetch (or prefetch) resumes at the instruction
immediately after the FLUSH.

F.1.5 Atomic Operations
SPARC V9 provides three atomic instructions to support mutual exclusion. These
instructions behave like both a load and a store but the operations are carried out
indivisibly. Atomic instructions may be used only in the cacheable domain.

An atomic access with a restricted ASI in nonprivileged mode (PSTATE.priv = 0)
causes a privileged_action trap. An atomic access with a noncacheable address
causes a data_access_exception trap. An atomic access with an unsupported ASI
causes a data_access_exception trap. TABLE F-1 lists the ASIs that support atomic
accesses.

Note MEMBAR #Sync is a costly instruction; unnecessary usage may
result in substantial performance degradation.
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F.1.5.1 SWAP Instruction

SWAP atomically exchanges the lower 32 bits in an integer register with a word in
memory. This instruction is issued only after store buffers are empty. Subsequent
loads interlock on earlier SWAPs. A cache miss allocates the corresponding line.

F.1.5.2 LDSTUB Instruction

LDSTUB behaves like SWAP, except that it loads a byte from memory into an integer
register and atomically writes all ones (FF16) into the addressed byte.

F.1.5.3 Compare and Swap (CASX) Instruction

Compare-and-swap combines a load, compare, and store into a single atomic
instruction. It compares the value in an integer register to a value in memory; if they
are equal, the value in memory is swapped with the contents of a second integer
register. All of these operations are carried out atomically; in other words, no other
memory operation may be applied to the addressed memory location until the entire
compare-and-swap sequence is completed.

F.1.6 Nonfaulting Load
A nonfaulting load behaves like a normal load, except as follows:

TABLE F-1 ASIs that Support SWAP, LDSTUB, and CAS

ASI Name Access

ASI_NUCLEUS{_LITTLE} Restricted

ASI_AS_IF_USER_PRIMARY{_LITTLE} Restricted

ASI_AS_IF_USER_SECONDARY{_LITTLE} Restricted

ASI_PRIMARY{_LITTLE} Unrestricted

ASI_SECONDARY{_LITTLE} Unrestricted

ASI_REAL{_LITTLE} Unrestricted

Note Atomic accesses with nonfaulting ASIs are not allowed, because these
ASIs have the load-only attribute.

Note If a page is marked as virtually noncacheable but physically
cacheable, allocation is done to the L2 cache only.
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■ It does not allow side-effect access. An access with the e bit set causes a
data_access_exception trap.

■ It can be applied to a page with the nfo bit set; other types of accesses will cause
a data_access_exception trap.
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APPENDIX G

Glossary

This chapter defines concepts and terminology common to all implementations of
SPARC V9. It also includes terms that are unique to the UltraSPARC T1
implementation.

ALU Arithmetic Logical Unit

address space identifier
(ASI) An 8-bit value that identifies an address space. For each instruction or data

access, the integer unit appends an ASI to the address. See also implicit ASI.

application program A program executed with the processor in nonprivileged mode. Note:
Statements made in this specification regarding application programs may not
be applicable to programs (for example, debuggers) that have access to
privileged processor state (for example, as stored in a memory-image dump).

architectural state Software-visible registers and memory (including caches).

ARF Architectural Register File.

ASI Address Space Identifier.

ASR Ancillary State Register.

big-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its
address increases.

BLD (Obsolete) abbreviation for Block Load instruction; replaced by LDBLOCKF.

blocking ASI An ASI that will access its ASI register/array location once all older
instructions in that strand have retired, there are no instructions in the other
strand which can issue, and the store queue, TSW, and LMB are all empty.
Additionally, the snoop pipeline is stalled before accessing the ASI register/
array location. See nonblocking ASI.

branch outcome Refers to whether or not a branch instruction will alter the flow of execution
from the sequential path. A taken branch outcome results in execution
proceeding with the instruction at the branch target; a not-taken branch
outcome results in execution proceeding with the instruction along the
sequential path after the branch.
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branch resolution A branch is said to be resolved when the result (that is, the branch outcome
and branch target address) has been computed and is known for certain.
Branch resolution can take place late in the pipeline.

branch target address The address of the instruction to be executed if the branch is taken.

BST (Obsolete) abbreviation for Block Store instruction; replaced by STBLOCKF.

bypass ASI An ASI that refers to memory and for which the MMU does not perform
virtual-to-real address translation (that is, memory is accessed using a direct
real address).

byte Eight consecutive bits of data.

CCR Condition Codes register

clean window A register window in which all of the registers contain 0, a valid address from
the current address space, or valid data from the current address space.

CMP Chip multiprocessor. A single chip processor that contains more than one
virtual processor. See also processor and virtual processor.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to
all caches in a shared-memory system.

commit An instruction commits when it modifies architectural state.

completed A memory transaction is said to be completed when an idealized memory has
executed the transaction with respect to all processors. A load is considered
completed when no subsequent memory transaction can affect the value
returned by the load. A store is considered completed when no subsequent
load can return the value that was overwritten by the store.

complex instruction An instruction that requires the creation of secondary “helper” instructions for
normal operation, excluding trap conditions such as spill/fill traps (which use
helpers).

consistency See coherence.

context A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

CWP Current Window Pointer

CPI Cycles per instruction. The number of clock cycles it takes to execute an
instruction.

CPU Central Processing Unit. A synonym for virtual processor.

cross-call An interprocessor call in a multiprocessor system.

CSR Control Status Register.

CTI Control transfer instruction
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current window The block of 24 R registers that is currently in use. The Current Window
Pointer (CWP) register points to the current window.

DCTI Delayed control transfer instruction.

DDR Double Data Rate.

deprecated The term applied to an architectural feature (such as an instruction or register)
for which a SPARC V9 implementation provides support only for compatibility
with previous versions of the architecture. Use of a deprecated feature must
generate correct results but may compromise software performance.
Deprecated features should not be used in new SPARC V9 software and may
not be supported in future versions of the architecture.

DFT Designed for test.

doublet Two bytes (16 bits) of data.

doubleword An aligned octlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

DTLB Data Cache Translation lookaside buffer.

even parity The mode of parity checking in which each combination of data bits plus a
parity bit contains an even number of set bits.

exception A condition that makes it impossible for the processor to continue executing
the current instruction stream without software intervention. See also trap.

extended word An aligned octlet, nominally containing integer data. Note: The definition of
this term is architecture dependent and may differ from that used in other
processor architectures.

EXU Execution Unit

F register A floating-point register. SPARC V9 includes single-, double-, and quad-
precision F registers.

fccn One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

FGU Floating-point and Graphics Unit.

floating-point
exception An exception that occurs during the execution of an FPop instruction as

defined by the Fpop1, Fpop2, IMPDEP1, and IMPDEP2 opcodes. The
exceptions are unfinished_FPop, unimplemented_FPop, sequence_error,
hardware_error, invalid_fp_register, or IEEE_754_exception.

floating-point IEEE-754
exception A floating-point exception, as specified by IEEE Std 754-1985. Listed within

this specification as IEEE_754_exception.
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floating-point operate
(FPop) instructions Instructions that perform floating-point and graphics calculations, as defined

by the FPop1, FPop2,and IMPDEP1 opcodes. FPop instructions do not include
FBfcc instructions, loads and stores between memory and the floating-point
unit, or instructions defined by the IMPDEP2 opcodes.

floating-point trap
type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs
floating-point operations, as defined by this specification.

FP Floating Point

FPRS Floating Point Register State (register).

FRF Floating-point register file.

FSR Floating-Point Status register.

GL Global-Level register.

GSR General Status register.

halfword An aligned doublet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

helper An instruction generated by the IRU in response to a complex instruction.
Helper instructions are not visible to software. Refer to Instruction Latencies on
page 76 for a complete list of all complex instructions and their helper
sequences.

hexlet Sixteen bytes (128 bits) of data.

hyperprivileged An adjective that describes the state of the processor when it is executing in
hyperprivileged mode

IFU Instruction Fetch Unit.

implementation Hardware or software that conforms to all of the specifications of an
instruction set architecture (ISA).

implementation
dependent An aspect of the architecture that can legitimately vary among

implementations. In many cases, the permitted range of variation is specified
in the SPARC V9 standard. When a range is specified, compliant
implementations must not deviate from that range.

implicit ASI The address space identifier that is supplied by the hardware on all instruction
accesses and on data accesses that do not contain an explicit ASI or a reference
to the contents of the ASI register.
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informative appendix An appendix containing information that is useful but not required to create an
implementation that conforms to the SPARC V9 specification. See also
normative appendix.

initiated Synonym: issued.

instruction field A bit field within an instruction word.

instruction set
architecture A set that defines instructions, registers, instruction and data memory, the

effect of executed instructions on the registers and memory, and an algorithm
for controlling instruction execution. Does not define clock cycle times, cycles
per instruction, data paths, etc. The bulk of the ISA implemented by
UltraSPARC T1 is defined in the UltraSPARC Architecture 2005; a few
extensions are described in this document.

integer unit (IU) A processing unit that performs integer and control-flow operations and
contains general-purpose integer registers and processor state registers, as
defined by this specification.

interrupt request A request for service presented to the processor by an external device.

IRF Integer register file.

IRU

ISA Instruction set architecture.

issue Used to describe the act of conveying an instruction from the instruction fetch
unit for execution on the pipeline.

L2C Level 2 Cache.

leaf procedure A procedure that is a leaf in the program’s call graph; that is, one that does not
call (by using CALL or JMPL) any other procedures.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its
address increases.

load An instruction that reads (but does not write) memory or reads (but does not
write) location(s) in an alternate address space. Load includes loads into integer
or floating-point registers, block loads, Load Quadword Atomic, and alternate
address space variants of those instructions. See also load-store and store, the
definitions of which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads
and writes location(s) in an alternate address space. Load-store includes
instructions such as CASA, CASXA, LDSTUB, LDSTUBA and the deprecated
SWAP and SWAPA instructions. See also load and store, the definitions of
which are mutually exclusive with load-store.
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may A keyword indicating flexibility of choice with no implied preference. Note:
“May” indicates that an action or operation is allowed; “can” indicates that it is
possible.

Memory Management
Unit (MMU) The address translation hardware that translates 64-bit virtual address into real

addresses. See also context, physical address, and virtual address.

must Synonym: shall.

next program counter
(NPC) A register that contains the address of the instruction to be executed next if a

trap does not occur.

NFO Nonfault access only.

nonblocking ASI An ASI that will access its ASI register/array location once all older
instructions in that strand have retired and there are no instructions in the
other strand which can issue. See blocking ASI.

nonfaulting load A load operation that, in the absence of faults or in the presence of a
recoverable fault, completes correctly, and in the presence of a nonrecoverable
fault returns (with the assistance of system software) a known data value
(nominally zero). See speculative load.

nonprivileged An adjective that describes:
(1) the state of the processor when PSTATE.priv = 0, that is, nonprivileged
mode;
(2) processor state information that is accessible to software while the
processor is in either privileged mode or nonprivileged mode; for example,
nonprivileged registers, nonprivileged ASRs, or, in general, nonprivileged
state;
(3) an instruction that can be executed when the processor is in either
privileged mode or nonprivileged mode.

nonprivileged mode The mode in which a processor is operating when PSTATE.priv = 0. See also
privileged.

normative appendix An appendix containing specifications that must be met by an implementation
conforming to the SPARC V9 specification. See also informative appendix.

nontranslating ASI An ASI that does not refer to memory (for example, refers to control/status
register(s)) and for which the MMU does not perform address translation.

NPC Next program counter.

npt Nonprivileged trap.

N_REG_WINDOWS The number of register windows present in a particular implementation.

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte,
rather than octet, is used to describe eight bits of data.
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odd parity The mode of parity checking in which each combination of data bits plus a
parity bit contains an odd number of set bits.

older instruction Refers to the relative fetch order of instructions. Instruction i is older than
instruction j if instruction i was fetched before instruction j. Data dependencies
flow from older instructions to younger instructions, and an instruction can
only be dependent upon older instructions. See younger instruction.

one-hot An n-bit binary signal is one-hot if, and only if, n − 1 of the bits are each 0 and
a single bit is 1.

opcode A bit pattern that identifies a particular instruction.

optional A feature not required for compliance to an architecture specification (such as
UltraSPARC Architecture 2005 or SPARC V9).

PC Program counter.

PCR Performance Control Register.

PIC Performance Instrumentation Counter.

PIL Processor Interrupt Level.

prefetchable (1) An attribute of a memory location that indicates to an MMU that
PREFETCH operations to that location may be applied.
(2) A memory location condition for which the system designer has
determined that no undesirable effects will occur if a PREFETCH operation to
that location is allowed to succeed. Typically, normal memory is prefetchable.

Nonprefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with
registers that clear on read; others have registers that initiate operations when
read. See side effect.

privileged An adjective that describes
(1) the state of the processor when it is executing in privileged mode (
PSTATE.priv = 1);
(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, privileged
ASIs, or in general, privileged state;
(3) an instruction that can be executed only when the processor is in privileged
mode.

privileged mode The mode in which a processor is operating when PSTATE.priv = 1. See also
nonprivileged.
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processor The unit on which a shared interface is provided to control the configuration
and execution of a collection of strands. A processor contains one or more
physical cores, each of which contains one or more strands. On a more physical
side, a processor is a physical module that plugs into a system. A processor is
expected to appear logically as a single agent on the system interconnect fabric.

Therefore, a simple processor, like an UltraSPARC I processor, that can only
execute one thread at a time would be a processor with a single physical core
that is single-stranded. A processor that follows the academic model of
simultaneous multithreading (SMT) would be a processor with a single
physical core, where that physical core supports multiple strands in order to
execute multiple threads at the same time (multi-stranded physical core). A
processor that follows the academic model of a CMP would be a processor
with multiple physical cores, each only supporting a single strand.

One can also have multiple physical cores where each physical core is multi-
stranded. UltraSPARC T1 is an example of the latter, where each UltraSPARC
T1 processor contains eight physical cores, each of which contains four strands.

program counter
(PC) A register that contains the address of the instruction currently being executed

by the IU.

PSO Partial store order.

quadlet Four bytes (32 bits) of data.

quadword Aligned hexlet. Note: The definition of this term is architecture dependent and
may be different from that used in other processor architectures.

RA Real address.

RAS Return Address Stack;
also Reliability, Availability and Serviceability.

RAW Read After Write

R register An integer register. Also called a general-purpose register or working register.

rd Rounding direction.

RDPR Read Privileged Register instruction

real address An address used by privileged mode code to describe the underlying physical
memory. Real address are usually translated by a combination of
hyperprivileged hardware and software to physical addresses which can be
used to access real physical memory or I/O device space.
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reserved Describing an instruction field, certain bit combinations within an instruction
field, or a register field that is reserved for definition by future versions of the
architecture.

Reserved instruction fields shall read as 0, unless the implementation supports
extended instructions within the field. The behavior of SPARC V9 processors
when they encounter nonzero values in reserved instruction fields is
undefined.

Reserved bit combinations within instruction fields are defined in Chapter 5,
Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap
on these reserved combinations.

Reserved register fields should always be written by software with values of
those fields previously read from that register or with zeroes; they should read
as zero in hardware. Software intended to run on future versions of SPARC V9
should not assume that these fields will read as 0 or any other particular value.
Throughout this specification, figures and tables illustrating registers and
instruction encodings indicate reserved fields and combinations with an em
dash (—).

restricted Describing an address space identifier (ASI) that may be accessed only while
the processor is operating in privileged mode.

rs1, rs2, rd The integer or floating-point register operands of an instruction. rs1 and rs2
are the source registers; rd is the destination register.

RMO Relaxed memory order.

RTO Read to own (cache line state).

RTS Read to share (cache line state).

shall A keyword indicating a mandatory requirement. Designers shall implement all
such mandatory requirements to ensure interoperability with other SPARC V9-
compliant products. Synonym: must.

should A keyword indicating flexibility of choice with a strongly preferred
implementation. Synonym: it is recommended.

SIAM Set interval arithmetic mode instruction.

side effect The result of a memory location having additional actions beyond the reading
or writing of data. A side effect can occur when a memory operation on that
location is allowed to succeed. Locations with side effects include those that,
when accessed, change state or cause external events to occur. For example,
some I/O devices contain registers that clear on read; others have registers that
initiate operations when read. See also prefetchable.

SIMD Single instruction stream, multiple data stream.
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store An instruction that writes (but does not explicitly read) memory or writes (but
does not explicitly read) location(s) in an alternate address space. Store
includes stores from either integer or floating-point registers, block stores,
partial store, and alternate address space variants of those instructions. See also
load and load-store, the definitions of which are mutually exclusive with store.

strand A term for thread-specific hardware support that identifies the hardware state
used to hold a software thread in order to execute it. Strand is specifically the
software visible architected state (PC, NPC, general-purpose registers, floating-
point registers, condition codes, status registers, ASRs, etc.) of a thread and any
microarchitecture state required by hardware for its execution. “Strand”
replaces the ambiguous term “hardware thread”. The number of strands in a
processor defines the number of threads that the operating system can
schedule on that processor at any given time. See also thread, and virtual
processor.

strand identifier
(SID) An n-bit value, in a processor implementing 2n strands, that uniquely identifies

each strand. The strand identifier in UltraSPARC T1 is five bits wide.

superscalar An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

supervisor software Software that executes when the processor is in privileged mode.

thread An executing process or lightweight process (LWP). Historically, the term
thread is overused and ambiguous. Software and hardware have historically
used it differently. From software’s (operating system) perspective, the term
thread refers to an entity that can be run on hardware, it is something that is
scheduled and may or may not be actively running on hardware at any given
time, and may migrate around the hardware of a system. From hardware’s
perspective, the term multithreaded processor refers to a processor that run
multiple software threads simultaneously. To avoid confusion the term thread
is used exclusively in the manner in which it is used by software and,
specifically, the operating system. A thread can be viewed in a practical sense
as a Solaris™ process or lightweight process (LWP). See also strand, and virtual
processor.

TICK Hardware clock—TICK counter register.

TL Trap Level

TPC Trap-saved PC.

trap The action taken by the processor when it changes the instruction flow in
response to the presence of an exception, a Tcc instruction, or an interrupt. The
action is a vectored transfer of control to privileged or hyperprivileged
software through a table. See also exception.

TSB Translation storage buffer. A table of the address translations that is
maintained by software in system memory and that serves as a cache of the
address translations.
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TSO Total store order.

TTE Translation table entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the Page Table. In some cases, the term is
explicitly used for the entries in the TSB.

unassigned A value (for example, an ASI number), the semantics of which are not
architecturally mandated and which may be determined independently by
each implementation within any guidelines given.

undefined An aspect of the architecture that has deliberately been left unspecified.
Software should have no expectation of, or make any assumptions about, an
undefined feature or behavior. Use of such a feature can deliver unexpected
results, may or may not cause a trap, can vary among implementations, and
can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall
not cause security holes (such as allowing user software to access privileged
state), put the processor into supervisor mode, or put the processor into an
unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is
optional or is emulated in software.

unpredictable Synonym: undefined.

unrestricted Describing an address space identifier (ASI) that can be used regardless of the
processor mode; that is, regardless of the value of PSTATE.priv.

user application
program Synonym: application program.

VA Virtual address.

virtual address An address produced by a processor that maps all systemwide, program-
visible memory. Virtual addresses usually are translated by a combination of
hardware and software to real addresses.

virtual processor The term virtual processor, is used to identify each strand in a processor. Each
virtual processor corresponds to a specific strand on a specific physical core
where there may be multiple physical cores each with multiple strands. In
most respects, a virtual processor appears to the system, and to the operating
system software, as a processing unit equivalent to a traditional single-
stranded microprocessor (as in UltraSPARC I). Each virtual processor has its
own interrupt ID and the operating system can schedule independent threads
on each virtual processor. How multiple virtual processors are achieved within
a processor is an implementation issue, and as much as possible the software
interface is independent of how multiple virtual processors are implemented.
The term virtual processor is used in place of strand because of the common
association of the term strand with multi-stranded physical cores. See also strand,
and thread.
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VIS™ Visual instruction set.

word An aligned quadlet. Note: The definition of this term is architecture dependent
and may differ from that used in other processor architectures.

younger instruction See older instruction.

writeback The process of writing a dirty cache line back to memory before it is refilled.

WRPR Write Privileged Register.
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Index
A
Accumulated Exception (aexc) field of FSR

register, 65
Address Mask (am), 60
Address Mask (am)

field of PSTATE register, 40, 41, 57
address space identifier (ASI)

bypass, 124
definition, 123
nontranslating, 128

application program, 123
ASI_PRIMARY_NO_FAULT, 57
ASI_PRIMARY_NO_FAULT_LITTLE, 57
ASI_SECONDARY_NO_FAULT, 57
ASI_SECONDARY_NO_FAULT_LITTLE, 57
atomic quad load instructions (deprecated), 27

B
BA instruction, 99
BCC instruction, 99
BCS instruction, 99
BE instruction, 99
BG instruction, 99
BGE instruction, 99
BGU instruction, 99
Bicc instructions, 99
BL instruction, 99
BLE instruction, 99
BLEU instruction, 99
block

copy, inner loop pseudo-code, 20
load instructions, 21

memory operations, 70
block-transfer ASIs, 22
BN instruction, 99
BNE instruction, 99
BNEG instruction, 99
BPA instruction, 100
BPCC instruction, 100
BPCS instruction, 100
bpe instruction, 100
BPG instruction, 100
BPGE instruction, 100
BPGU instruction, 100
BPL instruction, 100
BPLE instruction, 100
BPLEU instruction, 100
BPN instruction, 100
BPNE instruction, 100
BPNEG instruction, 100
BPOS instruction, 99
BPPOS instruction, 100
BPr instructions, 100
BPVC instruction, 100
BPVS instruction, 100
BVC instruction, 99
BVS instruction, 99
bypass ASI, 124

C
caching

TSB, 55
canrestore Register, 61
cansave Register, 61
clean window, 62
1



clean_window trap, 62
cleanwin Register, 61
CLEANWIN register, 62
compatibility with SPARC V9

terminology and concepts, 123
conventions

font, ix
notational, x

cross call, 71
Current Exception (cexc) field of FSR register, 65
current window pointer (CWP) register

definition, 125
cwp Register, 61

D
D superscript on instruction name, 13
data watchpoint

virtual address, 57
data_access_exception trap, 24, 27, 28, 41, 57, 59,

67
deferred

trap, 60
Diagnostic (diag) field of TTE, 54
Dirty Lower (dl) field of FPRS register, 64
Dirty Upper (du) field of FPRS register, 64
D-MMU, 57
doublet, 125
doubleword

definition, 125

E
enhanced security environment, 60
exceptions

fp_exception_other, 12
illegal_instruction, 12

extended
instructions, 71

F
FABSd instruction, 98, 99
FABSq instruction, 98, 99
FBA instruction, 99
FBE instruction, 99
FBfcc instructions, 99
FBG instruction, 99
FBGE instruction, 99

FBL instruction, 99
FBLE instruction, 99
FBLG instruction, 99
FBN instruction, 99
FBNE instruction, 99
FBO instruction, 99
FBPA instruction, 100
FBPE instruction, 100
FBPfcc instructions, 99
FBPG instruction, 100
FBPGE instruction, 100
FBPL instruction, 100
FBPLE instruction, 100
FBPLG instruction, 100
FBPN instruction, 100
FBPNE instruction, 100
FBPO instruction, 100
FBPU instruction, 100
FBPUE instruction, 100
FBPUG instruction, 100
FBPUGE instruction, 100
FBPUL instruction, 100
FBPULE instruction, 100
FBU instruction, 99
FBUE instruction, 99
FBUG instruction, 99
FBUGE instruction, 99
FBUL instruction, 99
FBULE instruction, 99
FCMPd instruction, 99
FCMPEd instruction, 99
FCMPEq instruction, 99
FCMPEs instruction, 99
FCMPq instruction, 99
FCMPs instruction, 99
FdTOx instruction, 98, 99
floating point

deferred trap queue (fq), 66
exception handling, 63
trap type (ftt) field of FSR register, 65

Floating Point Condition Code (fcc)
0 (fcc0) field of FSR register, 65, 66
1 (fcc1) field of FSR register, 65
2 (fcc2) field of FSR register, 65
3 (fcc3) field of FSR register, 65
field of FSR register in SPARC-V8, 66

Floating Point Registers State (FPRS) Register, 64
floating-point trap type (ftt) field of FSR register, 12
floating-point trap types
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unimplemented_FPop, 12
FLUSH instruction, 67
FMOVcc instructions, 100
FMOVccd instruction, 99
FMOVccq instruction, 99
FMOVccs instruction, 99
FMOVd instruction, 98, 99
FMOVq instruction, 98, 99
FNEGd instruction, 98, 99
FNEGq instruction, 98, 99
fp_exception_ieee_754 trap, 65, 66
fp_exception_other exception, 12
fp_exception_other trap, 59, 63, 65, 66
fq, see floating-point deferred trap queue (fq)
FqTOx instruction, 98, 99
FRF, 126
FsTOx instruction, 98, 99
FxTOd instruction, 98, 99
FxTOq instruction, 98, 99
FxTOs instruction, 98, 99

H
hardware

interrupts, 71
hardware_error floating-point trap type, 66

I
IEEE Std 754-1985, 65, 125
IEEE support

inexact exceptions, 113
infinity arithmetic, 106
NaN arithmetic, 112
one infinity operand arithmetic, 107
two infinity operand arithmetic, 110
zero arithmetic, 111

IEEE_754_exception floating-point trap type, 66
IEEE_754_exception floating-point trap type, 125
illegal_instruction exception, 12
illegal_instruction trap, 40, 59, 66, 69, 71
ILLTRAP instructions, 59
implementation note, xii
initiated, 127
instruction fields

definition, 127
instruction set architecture (ISA), 126, 127
instruction_access_exception trap, 40, 41, 57
instructions

reserved, 12
integer

division, 62
multiplication, 62
register file, 61

interrupt
packet, 71
request, 127

invalid_fp_register floating-point trap type, 66
Invert Endianness

(ie) field of TTE, 54
IRF, 127

L
LDDF_mem_address_not_aligned trap, 69
LDQF instruction, 69
LDQFA instruction, 69
LDTW instruction, 69
little-endian

byte ordering, 127
load instructions, 127
load twin extended word instructions, 25
load twin extended word instructions

(deprecated), 27
load-store instructions

definition, 127
Lock (l) field of TTE, 54

M
may (keyword), 128
mem_address_not_aligned trap, 24, 27, 28, 40, 57
MEMBAR

#LoadStore, 19
#StoreLoad, 19
#StoreStore, 19, 67
#Sync, 18, 19

memory
model, 19

MOVcc instructions, 100
must (keyword), 128
M-way set-associative TSB, 55

N
N_REG_WINDOWS, 61
nested traps

in SPARC-V9, 60
3



No-Fault Only (nfo) field of TTE, 54
nonfaulting load, 57
nonfaulting loads

definition of, 128
nonprivileged

mode, 123
Non-Standard (ns) field of FSR register, 65
nontranslating ASI, 128
note

implementation, xii
programming, xii

NPC register, 41

O
opcode

definition, 129
otherwin Register, 61
out of range

virtual address, 39
virtual address, as target of JMPL or

RETURN, 40

P
P superscript on instruction name, 13
partial store

instruction, 70
physical address (pa)

field of TTE, 54
population count (POPC) instruction, 60
power down mode, 71
precise traps, 60
PREFETCHA instruction, 68
privileged

(priv) field of PSTATE register, 57
privileged_action trap, 57
programming note, xii
pstate, 19
PSTATE

priv field, 128, 129

Q
quad-precision floating-point instructions, 63
quadword

definition, 130

R
reserved

fields in opcodes, 59
instructions, 12, 59

Rounding Direction (rd) field of FSR register, 66

S
SAVE instruction, 62
secure environment, 60
self-modifying code, 67
sequence_error floating-point trap type, 66
shall (keyword), 131
short floating point

load instruction, 70
store instruction, 70

should (keyword), 131
software

defined (soft) field of TTE, 54
defined (soft2) field of TTE, 54
Translation Table, 55

SPARC
V9 compliance, 59

SPARC V9
concepts and terminology, 123

speculative load, 57
STDF_mem_address_not_aligned trap, 69
store instructions, 132
STQF instruction, 69
STQFA instruction, 69
STTW instruction, 69

T
TA instruction, 99
Tcc instruction, reserved fields, 59
Tcc instructions, 99, 100
TCS instruction, 99
TE instruction, 99
terminology for SPARC V9, definition of, 123
TG instruction, 99
TGE instruction, 99
TGU instruction, 99
tl instruction, 99
tle instruction, 99
TLEU instruction, 99
TN instruction, 99
TNE instruction, 99
TNEG instruction, 99
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TPOS instruction, 99
Translation Table Entry see TTE
trap

stack, 60
state registers, 60

Trap Enable Mask (tem) field of FSR register, 65, 65,
66

TSB, 27
caching, 55
organization, 55
Register, 55

TTE, 53
TVC instruction, 99
TVS instruction, 99

U
UltraSPARC-I

extended instructions, 71
unfinished_FPop floating-point trap type, 66
unimplemented

instructions, 59
unimplemented_FPop floating-point trap type, 63,

66
unimplemented_FPop floating-point trap type, 12

V
VA Data Watchpoint register, 57
VA_watchpoint trap, 24, 28
Version (ver) field of FSR register, 65
virtual address

space illustrated, 40

W
watchpoint trap, 57
window_fill trap, 40
Writable (w) field of TTE, 54
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